Dual-modality flow phantom for ultrasound and optical flow measurements.

Phys Med Biol

Schlegel Research Institute for Aging, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling. The hydrogel's optical attenuation {1.56 dB cmwith 95% confidence interval (CI) of [1.512 1.608]}, refractive index {1.337, CI: [1.340 1.333]}, acoustic attenuation {0.038 dB/(cm × MHz), CI: [0.0368 0.0403]; frequency dependent factor of 1.321, CI: [1.296 1.346]}, and speed of sound {1523.6 m s, CI: [1523.8 1523.4]} were found to be suitable for PIV and ultrasound flow measurements. As an application demonstration, a bimodal flow phantom with spiral lumen was fabricated and used in simultaneous flow measurements with PIV and ultrasound color flow imaging (CFI). Velocity fields and profiles were compared between the two modalities under a constant flow rate (2.5 ml s). CFI was found to overestimate flow speed compared to the PIV measurements, with a 14%, 10%, and 6% difference between PIV and ultrasound for the 60°, 45°, and 30° angles measured. These results demonstrate the new phantom's feasibility in enabling performance validation of ultrasound flow mapping tools.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ada5a3DOI Listing

Publication Analysis

Top Keywords

flow measurements
16
flow phantom
12
piv ultrasound
12
flow
11
dual-modality flow
8
piv measurements
8
ultrasound flow
8
ultrasound
6
measurements
6
piv
6

Similar Publications

Acute promyelocytic leukemia (APL) is a medical emergency that needs immediate diagnosis and treatment. Podoplanin, a transmembrane glycoprotein that binds CLEC-2 on platelets, was recently demonstrated to be abnormally expressed in leukemic blasts in APL, as opposed to other forms of AML, in a study using thawed primary cells. This study aimed to explore and validate the diagnostic accuracy of measuring podoplanin expression by flow cytometry in the differential diagnosis of APL and other forms of acute myeloid leukemia (AML) as part of the diagnostic work-up of all cases suspected of AML in an academic hematology center.

View Article and Find Full Text PDF

Purpose: This study sought to determine the intrasession repeatability of the diffusion-weighted (DW) arterial spin labeling (ASL) sequence at different postlabel delays (PLDs).

Methods: We first performed numerical simulations to study the accuracy of the two-compartment water exchange rate (Kw) fitting model with added Gaussian noise for DW PLDs at 1500, 1800, and 2100 ms. Ten young, healthy participants then underwent a structural T scan and two intrasession in vivo DW ASL scans at each PLD on a 3T MRI.

View Article and Find Full Text PDF

Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.

Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.

View Article and Find Full Text PDF

Flexible suction-coagulation probe restores dexterity in robot-assisted surgery: bench-to-bedside evaluation.

Surg Endosc

September 2025

Department of Next Generation Endoscopic Intervention (Project ENGINE), Graduate School of Medicine, The University of Osaka, Suite 0802, BioSystems Bldg., 1-3, Yamadaoka, Suita, Osaka, 565-0871, Japan.

Objective: Rigid suction-coagulation probes constrain the wrist-like articulation that is central to robotic surgery. We therefore designed a 5-mm single-use flexible suction ball coagulator (flex-SBC) with a modified core design to restore dexterity and assessed its mechanical performance and early clinical feasibility, including the effect of the common robotic gripping strategies on suction flow.

Methods: Preclinical.

View Article and Find Full Text PDF

Observing differential spin currents by resonant inelastic X-ray scattering.

Nature

September 2025

National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.

Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.

View Article and Find Full Text PDF