Publications by authors named "Sean D Peterson"

As ultrasound-compatible flow phantoms are devised for performance testing and calibration, there is a practical need to obtain independent flow measurements for validation using a gold-standard technique such as particle image velocimetry (PIV). In this paper, we present the design of a new dual-modality flow phantom that allows ultrasound and PIV measurements to be simultaneously performed. Our phantom's tissue mimicking material is based on a novel hydrogel formula that uses propylene glycol to lower the freezing temperature of an ultrasound-compatible poly(vinyl) alcohol cryogel and, in turn, maintain the solution's optical transparency after thermocycling.

View Article and Find Full Text PDF

Purpose: To assess the ability of the Dolphin air-pulse aesthesiometer to present multiple stimuli, which are separated temporally (in sequence) or spatially (simultaneously).

Methods: Two studies were performed to explore the cooling effects induced by double air-puff stimuli generated by a novel aesthesiometer composed of two micro-blower integrated units. The stimuli were delivered sequentially or simultaneously at the same or different spatial locations to an in vitro eye model monitored using thermography.

View Article and Find Full Text PDF

Fish schooling has attracted the interest of the scientific community for centuries. Energy savings have been long posited to be a key determinant for the emergence of schooling patterns. Yet, current methodologies do not allow the precise quantification of the metabolic rate of specific individuals within the school, typically leaving researchers with only a single, global measurement of metabolic rate for the collective.

View Article and Find Full Text PDF

Many voice disorders are linked to imbalanced muscle activity and known to exhibit asymmetric vocal fold vibration. However, the relation between imbalanced muscle activation and asymmetric vocal fold vibration is not well understood. This study introduces an asymmetric triangular body-cover model of the vocal folds, controlled by the activation of bilateral intrinsic laryngeal muscles, to investigate the effects of muscle imbalance on vocal fold oscillation.

View Article and Find Full Text PDF

Intermittent pneumatic compression (IPC) systems apply external pressure to the lower limbs and enhance peripheral blood flow. We previously introduced a cardiac-gated compression system that enhanced arterial blood velocity (BV) in the lower limb compared to fixed compression timing (CT) for seated and standing subjects. However, these pilot studies found that the CT that maximized BV was not constant across individuals and could change over time.

View Article and Find Full Text PDF

Many voice disorders are linked to imbalanced muscle activity and known to exhibit asymmetric vocal fold vibration. However, the relation between imbalanced muscle activation and asymmetric vocal fold vibration is not well understood. This study introduces an asymmetric triangular body-cover model of the vocal folds, controlled by the activation of intrinsic laryngeal muscles, to investigate the effects of muscle imbalance on vocal fold oscillation.

View Article and Find Full Text PDF

Phonation onset is characterized by the unstable growth of vocal fold (VF) vibrations that ultimately results in self-sustained oscillation and the production of modal voice. Motivated by histological studies, much research has focused on the role of the layered structure of the vocal folds in influencing phonation onset, wherein the outer "cover" layer is relatively soft and the inner "body" layer is relatively stiff. Recent research, however, suggests that the body-cover (BC) structure over-simplifies actual stiffness distributions by neglecting important spatial variations, such as inferior-superior (IS) and anterior-posterior gradients and smooth transitions in stiffness from one histological layer to another.

View Article and Find Full Text PDF

Purpose: To identify the stimulus airflow characteristics and confirm the consistency of a novel air jet-based aesthesiometer capable of producing and applying multiple stimuli separated either by time and/or by space.

Methods: A novel aesthesiometer (Dolphin Aesthesiometer) was designed around a micro-blower under software management. Two nozzle attachments assisted in airflow control (flexible tube 1.

View Article and Find Full Text PDF

Incomplete glottal closure is a laryngeal configuration wherein the glottis is not fully obstructed prior to phonation. It has been linked to inefficient voice production and voice disorders. Various incomplete glottal closure patterns can arise and the mechanisms driving them are not well understood.

View Article and Find Full Text PDF

Incomplete glottal closure is a laryngeal configuration wherein the glottis is not fully obstructed prior to phonation. In this work, we introduce an Euler-Bernoulli composite beam vocal fold (VF) model that produces qualitatively similar incomplete glottal closure patterns as those observed in experimental and high-fidelity numerical studies, thus offering insights in to the potential underlying physical mechanisms. Refined physiological insights are pursued by incorporating the beam model into a VF posturing model that embeds the five intrinsic laryngeal muscles.

View Article and Find Full Text PDF

Swelling in the vocal folds is caused by the local accumulation of fluid, and has been implicated as a phase in the development of phonotraumatic vocal hyperfunction and related structural pathologies, such as vocal fold nodules. It has been posited that small degrees of swelling may be protective, but large amounts may lead to a vicious cycle wherein the engorged folds lead to conditions that promote further swelling, leading to pathologies. As a first effort to explore the mechanics of vocal fold swelling and its potential role in the etiology of voice disorders, this study employs a finite-element model with swelling confined to the superficial lamina propria, which changes the volume, mass, and stiffness of the cover layer.

View Article and Find Full Text PDF

Neck muscles play important roles in various physiological tasks, including swallowing, head stabilization, and phonation. The mechanisms by which neck muscles influence phonation are not well understood, with conflicting reports on the change in fundamental frequency for ostensibly the same neck muscle activation scenarios. In this work, we introduce a reduced-order muscle-controlled vocal fold model, comprising both intrinsic muscle control and extrinsic muscle effects.

View Article and Find Full Text PDF
Article Synopsis
  • Synthetic vocal fold replicas were used to investigate how nodule size and stiffness affect voice production, focusing on kinematic, aerodynamic, and acoustic factors.
  • The study involved adding beads of varying sizes and stiffness to mimic nodules and analyzing their impact on phonation threshold pressure and flow rates.
  • Results showed that larger nodules increased collision pressure relative to subglottal pressure, indicating that both size growth and stiffness could lead to vocal strain and potential phonotrauma over time.
View Article and Find Full Text PDF

Grouping the thin epithelium and thicker superficial lamina propria layers into a single cover layer has been widely adopted in finite element vocal fold models. Recent silicone vocal fold studies have suggested, however, that inclusion of a distinct epithelial layer leads to more physiologically representative motion. This study systematically explores the ramifications of incorporating an epithelial layer into a cover grouping for finite element vocal fold modeling.

View Article and Find Full Text PDF

Fundamental frequency patterns during phonation onset have received renewed interest due to their promising application in objective classification of normal and pathological voices. However, the associated underlying mechanisms producing the wide array of patterns observed in different phonetic contexts are not yet fully understood. Herein, we employ theoretical and numerical analyses in an effort to elucidate the potential mechanisms driving opposing frequency patterns for initial/isolated vowels versus vowels preceded by voiceless consonants.

View Article and Find Full Text PDF

Objectives: Relative fundamental frequency (RFF) is an acoustic measure of changes in fundamental frequency during voicing transitions. The physiological mechanisms underlying RFF remain unclear. Recent modeling suggests that changes in RFF during voicing offset are due to decreases in overall system stiffness as a direct result of the cessation of vocal fold collision.

View Article and Find Full Text PDF

Elucidating the hydrodynamics of fish swimming is critical to identifying the processes underlying fish orientation and schooling. Due to their mathematical tractability, models based on potential flow are preferred in the study of bidirectional interactions of fish with their surroundings. Dipole-based models that assimilate fish to pairs of vortices are particularly enticing, but yet to be thoroughly validated.

View Article and Find Full Text PDF

Objective: To develop and evaluate an accurate method for cuffless blood pressure (BP) estimation during moderate- and heavy-intensity exercise.

Methods: Twelve participants performed three cycling exercises: a ramp-incremental exercise to exhaustion, and moderate and heavy pseudorandom binary sequence exercises on an electronically braked cycle ergometer over the course of 21 minutes. Subject-specific and population-based nonlinear autoregressive models with exogenous inputs (NARX) were compared with feedforward artificial neural network (ANN) models and pulse arrival time (PAT) models.

View Article and Find Full Text PDF

Purpose: The goal of this study was to experimentally evaluate how compensating for the adverse acoustic effects of a posterior glottal opening (PGO) by increasing subglottal pressure and changing supraglottal compression, as have been associated with vocal hyperfunction, influences the risk of vocal fold (VF) trauma.

Method: A self-oscillating synthetic silicone model of the VFs with an airflow bypass that modeled a PGO was investigated in a hemilaryngeal flow facility. The influence of compensatory mechanisms on collision pressure and dissipated collision power was investigated for different PGO areas and supraglottal compression.

View Article and Find Full Text PDF

For over a century, scientists have sought to understand how fish orient against an incoming flow, even without visual and flow cues. Here, we elucidate a potential hydrodynamic mechanism of rheotaxis through the study of the bidirectional coupling between fish and the surrounding fluid. By modeling a fish as a vortex dipole in an infinite channel with an imposed background flow, we establish a planar dynamical system for the cross-stream coordinate and orientation.

View Article and Find Full Text PDF

In an effort to mitigate the 2019 novel coronavirus disease pandemic, mask wearing and social distancing have become standard practices. While effective in fighting the spread of the virus, these protective measures have been shown to deteriorate speech perception and sound intensity, which necessitates speaking louder to compensate. The goal of this paper is to investigate via numerical simulations how compensating for mask wearing and social distancing affects measures associated with vocal health.

View Article and Find Full Text PDF

A substantial barrier to the clinical adoption of cuffless blood pressure (BP) monitoring techniques is the lack of unified error standards and methods of estimating measurement uncertainty. This study proposes a fusion approach to improve accuracy and estimate prediction interval (PI) as a proxy for uncertainty for cuffless blood BP monitoring. BP was estimated during activities of daily living using three model architectures: nonlinear autoregressive models with exogenous inputs, feedforward neural network models, and pulse arrival time models.

View Article and Find Full Text PDF

Poor laryngeal muscle coordination that results in abnormal glottal posturing is believed to be a primary etiologic factor in common voice disorders such as non-phonotraumatic vocal hyperfunction. Abnormal activity of antagonistic laryngeal muscles is hypothesized to play a key role in the alteration of normal vocal fold biomechanics that results in the dysphonia associated with such disorders. Current low-order models of the vocal folds are unsatisfactory to test this hypothesis since they do not capture the co-contraction of antagonist laryngeal muscle pairs.

View Article and Find Full Text PDF

Background: Chemotherapy-induced peripheral neuropathy, a side effect of cancer treatment, presents several issues to patients, including reduced sensation and increased fall risk. Previously, massage therapy has been shown to improve chemotherapy-induced peripheral neuropathy symptoms, possibly through increased blood flow. A custom built intermittent pneumatic compression device, previously shown to increase lower leg blood flow, was tested as a plausible treatment modality.

View Article and Find Full Text PDF

Self-sustained oscillations of the vocal folds (VFs) during phonation are the result of the energy exchange between the airflow and VF tissue. Understanding this mechanism requires accurate investigation of the aerodynamic pressures acting on the VF surface during oscillation. A self-oscillating silicone VF model was used in a hemilaryngeal flow facility to measure the time-varying pressure distribution along the inferior-superior thickness of the VF and at four discrete locations in the anterior-posterior direction.

View Article and Find Full Text PDF