Assessing the risk of TB progression: Advances in blood-based biomarker research.

Microbiol Res

Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China. Electronic address:

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This review addresses the significant advancements in the identification of blood-based prognostic biomarkers for tuberculosis (TB), highlighting the importance of early detection to prevent disease progression. The manuscript discusses various biomarker categories, including transcriptomic, proteomic, metabolomic, immune cell-based, cytokine-based, and antibody response-based markers, emphasizing their potential in predicting TB incidence. Despite promising results, practical application is hindered by high costs, technical complexities, and the need for extensive validation across diverse populations. Transcriptomic biomarkers, such as the Risk16 signature, show high sensitivity and specificity, while proteomic and metabolic markers provide insights into protein-level changes and biochemical alterations linked to TB. Immune cell and cytokine markers offer real-time data on the body's response to infection. The manuscript also explores the role of single-nucleotide polymorphisms in TB susceptibility and the challenges of implementing novel RNA signatures as point-of-care tests in low-resource settings. The review concludes that, while significant progress has been made, further research and development are necessary to refine these biomarkers, improve their practical application, and achieve the World Health Organization's TB elimination goals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micres.2024.128038DOI Listing

Publication Analysis

Top Keywords

practical application
8
assessing risk
4
risk progression
4
progression advances
4
advances blood-based
4
blood-based biomarker
4
biomarker review
4
review addresses
4
addresses advancements
4
advancements identification
4

Similar Publications

Recent advances in presodiation strategies for hard carbon anodes in sodium-ion batteries.

Chem Commun (Camb)

September 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.

Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its low cost, abundant renewable resources, and high specific capacity. However, its practical application is significantly hindered by the severe initial irreversible capacity loss resulting from sodium consumption during the first cycle. To address this issue, a variety of presodiation strategies have been developed to compensate for the sodium loss and improve the initial coulombic efficiency.

View Article and Find Full Text PDF

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF

This review is intended as a guideline for beginners in confocal laser scanning microscopy. It combines basic theoretical concepts, such as fluorescence principles, resolution limits, and imaging parameters with practical guidance on sample preparation, staining strategies, and data acquisition using confocal microscopy. The aim is to combine technical and methodological aspects in order to provide a comprehensive and accessible introduction.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF