98%
921
2 minutes
20
During fast-charging, uneven lithium plating on the surface of commercial graphite anode impedes the electrochemical performance of lithium-ion batteries, causing a safety issue. The formation of a passivation layer, the solid-electrolyte interphase (SEI), due to side reactions with the organic electrolyte, correlates with long-term cycling performance under fast-charging conditions, necessitating comprehensive analysis. Herein, it is demonstrated that a molybdenum disulfide (MoS) coating on natural graphite (NG) modulates the properties of the SEI layer, enabling reduction of the charging time and the enhancement of long-term cycling performance. MoS spontaneously transforms into LiS and Mo nanoclusters through intercalation and conversion with Li, altering the chemical composition and stability of the SEI layer on the NG, promoting faster Li transport, and reducing interfacial resistance. The MoS-NG anode shows improved fast-charging capability and cycling performance under 3.0 C-charging and 1.0 C-discharging over 300 cycles without compromising energy density. In the full-cell configuration, a charging time of 14.7 min at 80% state of charge is achieved, making it suitable for electric vehicle applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202414117 | DOI Listing |
Adv Mater
September 2025
Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada.
Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Department of Environmental Engineering, Faculty of Engineering and Architecture, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey.
The green synthesis method is a significant approach that offers several advantages, including simplicity, rapidity, and cost-effectiveness in the synthesis of nanoparticles. Iron nanoparticles were synthesized in this work using waste banana peel extract as a capping and reducing agent. The produced nanoparticles were then subjected to a number of characterization procedures, such as Raman spectroscopy, X-ray diffractometry (XRD), zeta potential analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-VIS) absorption spectroscopy, field scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA).
View Article and Find Full Text PDFInt J Obes (Lond)
September 2025
Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
Objective: To systematically evaluate the association between anthropometric parameter and myopia in children and adolescents.
Methods: PubMed, Web of Science, EBSCO, Embase, CNKI, CBM, WanFang Data, and VIP databases were searched from inception to June, 2025. We collected cross-sectional studies on the association between anthropometric parameter and myopia in children and adolescents aged 0-25 years, including body mass index (BMI) and weight-adjusted waist index (WWI).
Theor Appl Genet
September 2025
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
Stacking desirable haplotypes across the genome to develop superior genotypes has been implemented in several crop species. A major challenge in Optimal Haplotype Selection is identifying a set of parents that collectively contain all desirable haplotypes, a complex combinatorial problem with countless possibilities. In this study, we evaluated the performance of metaheuristic search algorithms (MSAs)-genetic algorithm (GA), differential evolution (DE), particle swarm optimisation (PSO), and simulated annealing (SA) for optimising parent selection under two genotype building (GB) objectives: Optimal Haplotype Selection (OHS) and Optimal Population Value (OPV).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.
Concrete production significantly contributes to CO emissions and depletion of natural resources, leading to substantial environmental concerns. The integration of polymers into concrete has emerged as a promising innovative solution aimed at overcoming inherent limitations of traditional concrete, including brittleness, susceptibility to tracking, environmental degradation, and substantial ecological impacts. This systematic review thoroughly investigates the properties, sustainability implications, and practical challenges associated with polymer-based concrete (PBC), particularly focusing on polymer concrete composites (PCC) and polymer-modified concrete (PMC) detailing their composition, mechanical behavior, and durability.
View Article and Find Full Text PDF