Multiscale integral synchronous assembly of cuttlebone-inspired structural materials by predesigned hydrogels.

Nat Commun

Department of Chemistry, New Cornerstone Science Institute, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Te

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The overall structural integrity plays a vital role in the unique performance of living organisms, but the integral synchronous preparation of different multiscale architectures remains challenging. Inspired by the cuttlebone's rigid cavity-wall structure with excellent energy absorption, we develop a robust hierarchical predesigned hydrogel assembly strategy to integrally synchronously assemble multiple organic and inorganic micro-nano building blocks to different structures. The two types of predesigned hydrogels, combined with hydrogen, covalent bonding, and electrostatic interactions, are layer-by-layer assembled into brick-and-mortar structures and close-packed rigid micro hollow structures in a cuttlebone-inspired structural material, respectively. The cuttlebone-inspired structural materials gain crack growth resistance, high strength, and energy absorption characteristics beyond typical energy-absorbing materials with similar densities. This hierarchical hydrogel integral synchronous assembly strategy is promising for the integrated fabrication guidance of bioinspired structural materials with multiple different micro-nano architectures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696125PMC
http://dx.doi.org/10.1038/s41467-024-55344-1DOI Listing

Publication Analysis

Top Keywords

integral synchronous
12
cuttlebone-inspired structural
12
structural materials
12
synchronous assembly
8
predesigned hydrogels
8
energy absorption
8
assembly strategy
8
structural
5
multiscale integral
4
assembly cuttlebone-inspired
4

Similar Publications

Climate change, health, and wearable biosensors: Harnessing emerging technologies to bridge environmental exposures and physiological responses.

Prog Mol Biol Transl Sci

September 2025

Heidelberg Institute of Global Health (HIGH), Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany. Electronic address:

Climate change poses a growing threat to human health, increasing exposure to extreme environmental conditions. Wearable biosensors provide real-time monitoring of physiological responses to heat stress, including cardiovascular strain, thermoregulatory disruptions, sleep disturbances, and biomarkers of heat-related illnesses. These devices also assess behavioural adaptations, such as reduced physical activity, offering insights into physiological resilience and susceptibility.

View Article and Find Full Text PDF

Background: Golf is a sophisticated sport that integrates precision, skillfulness, and strategic thinking, with swing techniques of different clubs exhibiting distinct biomechanical characteristics. This study aims to investigate the biomechanical characteristics of golfers' full swings with different clubs from kinematic and dynamics perspectives, thereby providing insights for optimizing full swing techniques.

Methods: Ten low-handicap right-handed college male golfers were recruited, and their full swing parameters with the driver, 5-iron, and 7-iron (each club was successfully collected 10 times) were synchronously collected using a 250 Hz infrared motion capture system and a 1000 Hz three-dimensional force platform.

View Article and Find Full Text PDF

The present protocol evaluates the relative impact of visual and vestibular inputs during roll plane rotations using optokinetic, vestibular, and combined visuovestibular stimulations. Subjects underwent isolated visual rotations, whole-body vestibular rotations in darkness, and visuovestibular stimulations combining static visual scenes with head rotations. Dynamic and static eye movement gains, absolute amplitudes, velocities, and accelerations were measured alongside perceptual responses.

View Article and Find Full Text PDF

Objective: Construct a predictive model for rehabilitation outcomes in ischemic stroke patients 3 months post-stroke using resting state functional magnetic resonance imaging (fMRI) images, as well as synchronized electroencephalography (EEG) and electromyography (EMG) time series data.

Methods: A total of 102 hemiplegic patients with ischemic stroke were recruited. Resting - state functional magnetic resonance imaging (fMRI) scans were carried out on all patients and 86 of them underwent simultaneous electroencephalogram (EEG) and electromyogram (EMG) examinations.

View Article and Find Full Text PDF

Mn-doped carbon dots-based fluorescent-colorimetric dual-mode probes for selective and sensitive detection of Cr(VI) ions and l-ascorbic acid via smartphone-integrated analytical platform.

Anal Chim Acta

November 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:

Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.

View Article and Find Full Text PDF