98%
921
2 minutes
20
Human mesenchymal stem cells (hMSCs) respond to mechanical stimuli, including stiffness and viscoelasticity. To date, it is unknown how extracellular fluid viscosity affects hMSC function on substrates of different stiffness and viscoelasticity. While hMSCs assume an adipogenic phenotype on gels of low stiffness and prescribed stress relaxation times, elevated fluid viscosity is sufficient to bias hMSCs toward an osteogenic phenotype. Elevated viscosity induces Arp2/3-dependent actin remodeling, enhances NHE1 activity, and promotes hMSC spreading via up-regulation of integrin-linked kinase. The resulting increase in membrane tension triggers the activation of transient receptor potential cation vanilloid 4 to facilitate calcium influx, thereby stimulating RhoA/ROCK and driving YAP-dependent RUNX2 translocation to the nucleus, leading to osteogenic differentiation. hMSCs on soft gels at elevated relative to basal viscosity favor an M2 macrophage phenotype. This study establishes fluid viscosity as a key physical cue that imprints osteogenic memory in hMSCs and promotes an immunosuppressive phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11691697 | PMC |
http://dx.doi.org/10.1126/sciadv.adr5023 | DOI Listing |
Med Eng Phys
October 2025
Department of Mechanical Engineering, University of Cape Town, 7701, South Africa; Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, 7701, South Africa.
The usability and versatility of autoinjectors in managing chronic and autoimmune diseases have made them increasingly attractive in medicine. However, investigations into autoinjector designs require an understanding of the kinematic properties and fluid behaviour during injection. To optimise injection efficiency, this study develops a mathematical and computational fluid dynamics (CFD) model of an IM autoinjector by investigating the effects of viscosity, needle length, needle diameter, and medication volume on the injection process.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Ansys Inc., Houston, TX 77094, USA.
Introduction: Benchtop and animal models have traditionally been used to study the propagation of Onyx Liquid Embolic Systems (Onyx) used in the treatment of brain arteriovenous malformations (AVM). However, such models are costly, do not provide sufficient detail to elucidate how variations in Onyx viscosity alter flow dynamics, and rely on some trial-and-error, resulting in elongated timelines for product development.
Objectives: The goal of this study was to leverage Computational Fluid Dynamics (CFD) simulations to predict the behavior of different Onyx formulations.
Food Res Int
November 2025
School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430
This study aimed to examine the impact of composite enzymatic treatment on the physicochemical properties of oat milk, which would provide an effective strategy to improve the stability of plant-based milk. Oat milks treated with individual α-amylase or in combination with the protein glutaminase were produced. The result indicated that composite enzyme treatment significantly changed the physicochemical properties and significantly improved the stability of oat milk.
View Article and Find Full Text PDFBiomed Eng Lett
September 2025
Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154 USA.
Alginate is known to readily aggregate and form a physical gel when exposed to cations, making it a promising material for bioprinting applications. Alginate and its derivatives exhibit viscoelastic behavior due to the combination of solid and fluid components, necessitating the characterization of both elastic and viscous properties. However, a comprehensive investigation into the time-dependent viscoelastic properties of alginate hydrogels specifically optimized for bioprinting is still lacking.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
School of Chemistry and Physics, Australian Research Council Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia.
Nanoporous structures play a critical role in a wide range of applications, including catalysis, thermoelectrics, energy storage, gas adsorption, and thermal insulation. However, their thermal instability remains a persistent challenge. Inspired by the extraordinary resilience of tardigrades, an "atomic armor" strategy is introduced to enhance the stability of nanoporous structures.
View Article and Find Full Text PDF