98%
921
2 minutes
20
Organoids are expected to function as effective human organ models for precision cancer studies and drug development. Currently, primary tissue-derived organoids, termed non-engineered organoids (NEOs), are produced by manual pipetting or liquid handling that compromises organoid-organoid homogeneity and organoid-tissue consistency. Droplet-based microfluidics enables automated organoid production with high organoid-organoid homogeneity, organoid-tissue consistency, and a significantly improved production spectrum. It takes advantage of droplet-encapsulation of defined populations of cells and droplet-rendered microstructures that guide cell self-organization. Herein, we studied the droplet-engineered organoids (DEOs), derived from mouse liver tissues and human liver tumors, by using transcriptional analysis and cellular deconvolution on bulk RNA-seq data. The characteristics of DEOs are compared with the parental liver tissues (or tumors) and NEOs. The DEOs are proven higher reproducibility and consistency with the parental tissues, have a high production spectrum and shortened modeling time, and possess inter-organoid homogeneity and inter-tumor cell heterogeneity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670719 | PMC |
http://dx.doi.org/10.1016/j.fmre.2022.05.018 | DOI Listing |
Research (Wash D C)
May 2025
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.
Achieving high maturity and functionality in in vitro skeletal muscle models is essential for advancing our understanding of muscle biology, disease mechanisms, and drug discovery. However, current models struggle to fully recapitulate key features such as sarcomere structure, muscle fiber composition, and contractile function while also ensuring consistency and rapid production. Adult stem cells residing in muscle tissue are known for their powerful regenerative potential, yet tissue-derived skeletal muscle organoids have not been established.
View Article and Find Full Text PDFAnal Chem
December 2024
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.
Automated segmentation and evaluation algorithms have been demonstrated to enhance the simplicity and translational utility of organoid technology. However, there is a pressing need for the development of complex organoids that possess epithelium environmental elements, dense regional cell aggregation, and intraorganoid morphologies. Nevertheless, there has been limited progress, including both the construction of data sets and the development of algorithms, in the use of user-friendly microscopy to address such complex organoids.
View Article and Find Full Text PDFAdv Sci (Weinh)
July 2024
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China.
The circadian clock coordinates the daily rhythmicity of biological processes, and its dysregulation is associated with various human diseases. Despite the direct targeting of rhythmic genes by many prevalent and World Health Organization (WHO) essential drugs, traditional approaches can't satisfy the need of explore multi-timepoint drug administration strategies across a wide range of drugs. Here, droplet-engineered primary liver organoids (DPLOs) are generated with rhythmic characteristics in 4 days, and developed Chronotoxici-plate as an in vitro high-throughput automated rhythmic tool for chronotherapy assessment within 7 days.
View Article and Find Full Text PDFInt J Cancer
January 2024
Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Patient-derived organoids are gaining incremental popularity in both basic sciences and translational applications toward precision medicine and revolutionized drug discovery. However, for tumor organoids, challenges remain in low rates of organoid growth and tumor cell purity, that is, recapitulation of tumor phenotypes in constructed organoids. Here, we report a method of microfluidic droplet encapsulation that provides structural guidance for tumor cell growth and organization, where they develop into tumor organoids with high purity and high rates of modeling success, as compared to the classical organoid modeling method, that is, non-engineered organoids.
View Article and Find Full Text PDFFundam Res
November 2024
Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.
Organoids are expected to function as effective human organ models for precision cancer studies and drug development. Currently, primary tissue-derived organoids, termed non-engineered organoids (NEOs), are produced by manual pipetting or liquid handling that compromises organoid-organoid homogeneity and organoid-tissue consistency. Droplet-based microfluidics enables automated organoid production with high organoid-organoid homogeneity, organoid-tissue consistency, and a significantly improved production spectrum.
View Article and Find Full Text PDF