98%
921
2 minutes
20
Objectives: To compare the mechanical performance of partially replaced (repaired) intra-coronal restorations to totally replaced ones in root canal-treated teeth.
Methods: Thirty maxillary second premolars were selected according to strict criteria, mounted on moulds, and had mesio-occluso-distal (MOD) cavities prepared. Resin composite restorative material was used to perform the initial restoration, followed by aging procedures using thermo-mechanical cycling fatigue to replicate six months of intraoral aging. The specimens were then randomly divided into two groups: a totally replaced restoration (TR) group (n = 15), which involved the preparation of a traditional endodontic access cavity after the complete removal of the pre-existing coronal filling; and a partially replaced restoration (PR) group (n = 15), which involved accessing the tooth through the pre-existing restoration without completely removing it. Root canal preparation and filling procedures were conducted, and the access cavity was sealed with a new resin composite restoration, followed by a new thermo-mechanical cycling aging procedure. Finally, the specimens were submitted to a static fracture test to measure specimen fracture strength and determine the failure mode pattern (repairable fracture or irreparable fracture). Chi-square and t-tests were used for statistical analysis.
Results: Significant differences between the groups regarding their mechanical resistance were found. The average failure load of the TR group was 1115.13 N and 1330.23 N in the PR group (p = 0.002). Regarding the failure modes, the TR group exhibited eight irreparable fractures, while the PR group had four (p = 0.136).
Conclusions: Partially replaced restorations presented higher fracture strength and led to fewer irreparable fractures when compared to totally replaced restorations in root canal-treated teeth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673807 | PMC |
http://dx.doi.org/10.1186/s12903-024-05180-y | DOI Listing |
Dalton Trans
September 2025
Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).
View Article and Find Full Text PDFPLoS One
September 2025
United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Portland Oregon, United States of America.
Increasing wildfire activity in mesic, temperate Pacific Northwest forests west of the Cascade Range crest has stimulated interest in understanding whether alternative forest management practices could reduce risk of stand-replacing fire. To explore how management can enhance fire resistance in these forests and assess tradeoffs among resistance enhancement, carbon sequestration and storage, and economic returns, we conducted 40-year simulations of stand development with BioSum, a framework for conducting landscape analysis with the Forest Vegetation Simulator (FVS), utilizing a statistically representative and spatially balanced sample of Forest Inventory and Analysis (FIA) plots. Simulation outcomes under business-as-usual silviculture were contrasted with fire-aware silviculture, and treatment optimization logic was developed and applied to represent landscape-scale outcomes under business-as-usual and fire-focused management scenarios.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
For the first time, a dual-ligand MOF, Al-Fum/Asp, was synthesized by partially replacing fumarate ligands in the Al-Fum framework with l-aspartic acid and incorporated into PIM-1 to fabricate mixed-matrix membranes. Amino groups anchored on Al-Fum/Asp enhance CO-adsorption, enabling the membrane to achieve CO/N separation performance beyond the 2019 Robeson upper bound.
View Article and Find Full Text PDFACS Nano
September 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
The integration of Mn in NaMnFe(PO)PO (NMFPP) enhances the energy density but compromises the Na mobility and structural stability due to limited electron hopping and pronounced Jahn-Teller effects. To address this, a structurally compatible anionic substitution strategy is implemented by partially replacing PO with bulkier and less electronegative SiO groups. The reinforced cathode exhibits enhanced rate performance, which is attributed to lattice expansion induced by the larger SiO units, thereby facilitating Na diffusion and reducing impedance during charge-discharge processes, as supported by GITT and DRT analyses.
View Article and Find Full Text PDFCrit Rev Anal Chem
September 2025
Department of Civil Engineering, Architecture and Engineering, Northeast Petroleum University, Daqing, China.
Surfactant is usually considered the key component to form microemulsion. surfactant-based microemulsion (SBME) can also be called traditional microemulsion. It has a wide range of applications.
View Article and Find Full Text PDF