98%
921
2 minutes
20
Background: Tetramethylpyrazine (TMP), a key bioactive constituent derived from Ligusticum wallichii Franchat, has demonstrated efficacy in mitigating multidrug resistance (MDR) in human breast cancer (BC) cells. However, the precise mechanisms underlying its action remain poorly understood.
Purpose: Cancer stem cells (CSCs) are widely recognized as the primary contributors to MDR. This investigation seeks to elucidate the role and mechanisms through which TMP counteracts MDR by attenuating CSC-like characteristics.
Methods: Various assays, including flow cytometry, sphere formation, and Western blotting, were employed to evaluate TMP's effects on breast cancer stem cell (BCSC)-like phenotypes in vitro. In vivo, extreme limiting dilution assays and immunohistochemistry (IHC) were executed to assess the impacts of TMP on BCSC frequency and the levels of stemness markers. Mechanistically, RNA sequencing was performed to uncover the key biological processes involved in TMP's effects on BCSCs. Further experiments, encompassing micro scale thermophoresis (MST), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and amino acid mutation analyses, were utilized to identify the essential targets and corresponding binding sites of TMP. Finally, the effects of TMP on BCSC-like phenotypes were confirmed using cells with mutated amino acid residues, which allowed us to investigate the specificity of TMP's binding sites. To further evaluate the impact of TMP on drug resistance, doxorubicin-resistant MCF7 (MCF-7) cells, along with corresponding cell lines harboring mutated amino acid residues, were employed.
Results: TMP was found to inhibit BCSC-like properties both in vitro and in vivo, evidenced by a reduction in the CD44/CD24 population, sphere formation capability, and expression of stemness markers. Mechanistic studies revealed that TMP targets 3‑hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol biosynthesis. TMP binds to Asp-767 of HMGCR, thereby inhibiting its activity and reducing cholesterol synthesis. The influence of TMP on BCSC-like phenotypes was nullified by overexpression of wild-type HMGCR, while mutations in the binding site of HMGCR had no effect on TMP's inhibition of BCSC-like properties. Additionally, TMP mitigated MDR by targeting HMGCR.
Conclusion: These findings suggest that TMP alleviates MDR by reducing BCSC-like traits through targeting HMGCR and disruption of cholesterol biosynthesis in BC. This provides new insights into the mechanisms through which TMP alleviates MDR and offers new lead compound for exploring HMCGR antagonists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2024.156344 | DOI Listing |
Front Pharmacol
August 2025
Department of Neurology, Clinical Neuroscience Center, The 7th Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
Tetramethylpyrazine (TMP), a bioactive alkaloid isolated from the traditional Chinese medicine (, has gained significant attention for its therapeutic potential in cerebrovascular diseases and cognitive impairment, mainly due to its antioxidant, anti-inflammatory, and anti-apoptotic properties. However, its clinical application is often limited by suboptimal pharmacokinetic characteristics and modest potency. This review highlights recent advancements in the structure-activity relationship (SAR) optimization of TMP, focusing on its derivatives' neuroprotective efficacy and vascular benefits.
View Article and Find Full Text PDFIndian J Endocrinol Metab
August 2025
Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India.
Introduction: Tumour-induced osteomalacia (TIO) is rare. At our referral centre, we see a substantial number of TIO. Therefore, we planned to study their profile and treatment outcomes to provide insight in management.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2025
National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China. Electronic address:
Ethnopharmacological Relevance: Both chuanxiong rhizome and Coptis chinensis were first recorded in the Shennong's Classic of Materia Medica. Chuanxiong rhizome and Coptis chinensis are a classic herbal pair in Traditional Chinese Medicine (TCM), renowned for their effects in activating blood circulation and resolving toxicity. They are widely used to treat chest impediment and heart pain.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geog
Tire microplastics (TMPs) represent a major contributor to microplastic pollution, posing threats to aquatic ecosystems. As carbon-rich substrates, TMPs influence microbial colonization and ecological functions. This study investigates the impacts of pristine (P-TMPs) and scrap (S-TMPs) TMPs from the same brand on microbial communities within the tire-plastisphere.
View Article and Find Full Text PDFJ Adv Res
September 2025
School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China. Electronic address:
Introduction: Morphological and functional abnormalities of mitochondrial-associated endoplasmic reticulum (ER) membrane (MAM) have emerged as a key mediator of organelle dysfunction during liver fibrosis. Tetramethylpyrazine (TMP) was investigated as a potential therapy for liver fibrosis with an unclear mechanism.
Objectives: Considering the changes of MAM quantity and gap distance during liver fibrosis, we aimed to investigate the underlying mechanisms and their potential as therapeutic targets for TMP in inhibiting liver fibrosis.