98%
921
2 minutes
20
Epoxy resin (EP) is an outstanding polymer material known for its low cost, ease of preparation, excellent electrical insulation properties, mechanical strength, and chemical stability. It is widely used in high- and ultra-high-voltage power transmission and transformation equipment. However, as voltage levels continue to increase, EP materials are gradually failing to meet the performance demands of operational environments. Thus, the development of high-performance epoxy resin materials has become crucial. In this study, a combined treatment using plasma and a fluorine-containing coupling agent was employed to fluorinate graphene nanosheets (GNSs), resulting in DFGNSs. Different concentrations of GNSs/DFGNS-modified EP composites were prepared, and their effects on enhancing the surface insulation properties were studied. Tests on surface flashover voltage, surface charge dissipation, trap distribution, and surface resistivity demonstrated that both GNSs and DFGNSs significantly improve the insulation properties of EP materials. Optimal improvement was achieved with a DFGNS content of 0.2 wt%, where the flashover voltage increased by 16.23%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11677801 | PMC |
http://dx.doi.org/10.3390/nano14242009 | DOI Listing |
Langmuir
September 2025
College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, P. R. China.
The regulation of droplet dynamics based on external electric fields and bioinspired functional surfaces has widespread applications in various fields. However, research on the coupling of these two factors to enhance oil-water separation efficiency is urgently needed. In this study, laser-induced and solvent treatment techniques were coupled to assemble a micronano setal and bioinspired beetle elytra textured substrate with the lotus effect, A "top conductive, bottom insulating" Desert beetle elytra micronano tuft composite texture (DBE) biomimetic superhydrophobic surface was fabricated.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Okayama University, Department of Physics, Okayama 700-8530, Japan.
The doped topological insulator Cu_{x}Bi_{2}Se_{3} has attracted considerable attention as a new platform for studying novel properties of spin-triplet and topological superconductivity. In this work, we performed synchrotron x-ray diffraction measurements on Cu_{x}Bi_{2}Se_{3} (0.24≤x≤0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
Modern electronic systems are evolving toward miniaturized designs, flexible architectures, and high-power-density requirements. However, progress in developing electrical insulation materials that integrate mechanical robustness, flexibility, and thermal stability remains a critical challenge. This study introduces a novel nacre-inspired aramid-vermiculite nanopaper featuring a 3D interconnected layered network, designed for use in flexible electrical insulating applications.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
Photomultiplication-type organic photodetectors (PM-type OPDs) have recently attracted attention. However, the development of polymer donors specifically tailored for this architecture has rarely been reported. In this study, we synthesized benzobisoxazole-based polymer donors incorporating alkylated π-spacers that simultaneously enhance photocurrent density () and suppress dark current density (), leading to high responsivity () and specific detectivity (*).
View Article and Find Full Text PDF