[NO Generation, Key Influencing Factors, and Emission Reduction Strategies of AO Process in Municipal Wastewater Treatment Plant].

Huan Jing Ke Xue

National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To achieve non-carbon dioxide greenhouse gas emission reduction and control in municipal wastewater treatment plants (WWTPs), this study conducted one-year long-term monitoring of nitrous oxide (NO) in the anaerobic-anoxic-aerobic (AO) process of a large-scale municipal wastewater treatment plant in Beijing. The experimental results showed that the anaerobic and anoxic zones of the AO process could effectively remove dissolved NO contained in the return sludge, while the aerobic zone was the main area for NO generation and emission, and its generation pathway may have been dominated by ammonia oxidizing bacteria (AOB) denitrification. A significant difference was observed between winter and summer NO production, and the difference in the average NO release flux was up to 7.6 times, and the average monthly NO emission in winter was 32.75 kg, which was significantly higher than that in summer (6.06 kg). The accumulation of nitrite (NO-N) and the concentration of dissolved oxygen (DO) had a significant impact on NO production. Therefore, to achieve NO reduction in the AO process, the concentration of NO-N in the aerobic zone should be controlled below 0.40 mg·L in winter and 0.10 mg·L in summer, while the DO concentration should be maintained above 1.2 mg·L.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202401277DOI Listing

Publication Analysis

Top Keywords

municipal wastewater
12
wastewater treatment
12
emission reduction
8
aerobic zone
8
[no generation
4
generation key
4
key influencing
4
influencing factors
4
emission
4
factors emission
4

Similar Publications

Transition Metal Recovery Using Manganese-Oxidizing Microbes and Recycled Carpet Fiber.

Environ Sci Technol

September 2025

Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.

Mining metals for the advancement of society requires innovative and cost-effective remediation strategies that protect the environment and, ideally, allow for concentration and recovery of metals from waste streams. Microbially mediated strategies that remove metals from aqueous waste streams via sorption and/or oxidation-reduction reactions show promise as eco-friendly, cost-effective solutions. Our objective was to use Mn-oxidizing fungi, isolated from the Soudan Underground Mine State Park, MN, a high-salinity, mine-impacted environment, to sequester transition metals Mn, Co, Cu, and Ni.

View Article and Find Full Text PDF

Seasonal patterns of viromes in urban aquatic environments of Manitoba.

Appl Environ Microbiol

September 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

Unlabelled: Although wastewater treatment plants harbor many pathogens, traditional methods that monitor the microbial quality of surface water and wastewater have not changed since the early 1900s and often disregard the presence of other types of significant waterborne pathogens such as viruses. We used metagenomics and quantitative PCR to assess the taxonomy, functional profiling, and seasonal patterns of DNA and RNA viruses, including the virome distribution in aquatic environments receiving wastewater discharges. Environmental water samples were collected at 11 locations in Winnipeg, Manitoba, along the Red and Assiniboine rivers during the Spring, Summer, and Fall 2021.

View Article and Find Full Text PDF

A polydopamine-glued g-CN/CoFeWO membrane, prepared one-pot synthesis, achieves complete sulfamethoxazole degradation through synergistic photocatalysis and PMS activation. It exhibits robust stability over 10 hours of continuous operation, maintaining high efficiency (97%) even in real municipal wastewater effluent, offering a novel and promising water purification strategy.

View Article and Find Full Text PDF

Unveiling the effect of Fe(III) and sulfate on ammonium oxidation under anaerobic condition: interactions and extracellular electron transfer.

Water Res

August 2025

Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.

Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.

View Article and Find Full Text PDF

Efficient and low-cost removal of dissolved organic phosphorus by visible light-enhanced Ti electrocoagulation with self-generated rutile photocatalysts.

Water Res

August 2025

State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.

View Article and Find Full Text PDF