Old but not ancient: Rock-leached organic carbon drives groundwater microbiomes.

Sci Total Environ

Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany; German Center for Integrative Biodiversity Research (iDiv) Halle-Jena_Leipzig, Germany. Electronic add

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

More than 90% of earth's microbial biomass resides in the continental subsurface, where sedimentary rocks provide the largest source of organic carbon (C). While many studies indicate microbial utilization of fossil C sources, the extent to which rock-organic C is driving microbial activities in aquifers remains largely unknown. Here we incubated oxic and anoxic groundwater with crushed carbonate rocks from the host aquifer and an outcrop rock of the unsaturated zone characterized by higher organic C content, and compared the natural abundance of radiocarbon (C) of available C pools and microbial biomarkers. The ancient rocks surprisingly released organic substances with up to 72.6 ± 0.3% modern C into the groundwater, suggesting leachable fresh organic material from surface transport was preserved within rock fractures. Over half of the rock-leached compounds were also found in the original groundwater dissolved organic carbon (DOC), indicating in situ release of material stored in rock fractures through weathering processes. In addition to aliphatic and aromatic hydrocarbons, rock-leachates were rich in lipids, peptides, and carbohydrates. Radiocarbon analysis of phospholipid-derived fatty acids showed a rapid microbial response to this 'younger' organic material, comprising up to 31% (anoxic) and 51% (oxic) of their biomass C from the rock-leachate after 18 days of incubation. Predictive functional profiling of rock-enriched taxa, including species of Desulfosporosinus, Ferribacterium and Rhodoferax, also suggested metabolic potential for aliphatic and aromatic hydrocarbon degradation. PLFAs of the original groundwater were highly C-depleted, indicating utilization of a mixture of fossil and 'younger' C sources. Our findings suggest that carbonate rocks act as temporal sink for 'younger' organic matter, that leaches with fossil hydrocarbons from sedimentary rocks, driving microbial metabolism in subsurface ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.178212DOI Listing

Publication Analysis

Top Keywords

organic carbon
12
organic
8
sedimentary rocks
8
driving microbial
8
carbonate rocks
8
organic material
8
rock fractures
8
original groundwater
8
aliphatic aromatic
8
'younger' organic
8

Similar Publications

Helicenes are circularly polarized luminescence (CPL)-active but suffer from a fundamental tradeoff between fluorescence quantum yield (Φ) and luminescence dissymmetry factor (||). Herein, we present a strategy combining lateral π-extension and helical elongation in carbazole-embedded helicenes to address this challenge. Specifically, π-extended diaza[7]helicene () and diaza[9]helicene () were synthesized and characterized, revealing nearly a 2-fold increase in Φ and a 6-fold enhancement in || from to .

View Article and Find Full Text PDF

Carbonate esters as green alternatives in chromatographic separations.

Anal Chim Acta

November 2025

Department of chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, USA. Electronic address:

Background: Carbonate esters are polar aprotic solvents that can be used to replace polar solvents: methanol, acetonitrile, or even apolar solvents in the mobile phases for liquid chromatography. Dimethyl, diethyl, and propylene carbonates (DMC, DEC, and PC) are not fully soluble in water.

Results: Twelve volume phase diagrams of water, the three carbonates, and methanol, ethanol, propanol, and acetonitrile were determined.

View Article and Find Full Text PDF

Dissolved organic matter (DOM) plays a key role in grassland carbon biogeochemistry and shows sensitivity to global climate change, particularly nitrogen (N) deposition. We investigated the soil DOM molecular composition by UV-Vis and fluorescence spectroscopy, and FT-ICR MS through a N addition experiment (CK, N5, N10, N20, and N40 [0, 5, 10, 20, and 40 g N m-2 year-1, respectively]) in a desert steppe of northwest China. Moderate N inputs (N5-N20) caused a dose-dependent increase in DOM content (9.

View Article and Find Full Text PDF

Direct electrocatalytic depolymerization of lignin using a thermally stable organic salt electrolyte: performance and mechanistic insights.

J Colloid Interface Sci

September 2025

Nanning Normal University, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning 530100, PR China. Electronic address:

Electrochemical depolymerization of lignin to produce low molecular weight aromatic compounds is characterized by mild conditions and low carbon emissions. However, using non-metallic catalysts for this process faces challenges in terms of selectivity and activity. This study found that high-melting-point organic salts - tetra-n-butyl tetrafluoroborate (TBABF), can function simultaneously as a catalyst and oxidant at room temperature and in air, effectively catalyzing the CO bond cleavage in lignin.

View Article and Find Full Text PDF

Bimetallic SnBi catalyst in metal-organic framework for efficient electrocatalytic CO conversion.

J Colloid Interface Sci

August 2025

State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.; Ordos Laboratory, Inner

Currently, electrocatalytic conversion of carbon dioxide into higher-value compounds is a promising approach. However, developing a stable and efficient catalyst with high selectivity for specific products remains a major challenge. Herein, we constructed a bismuth-based metal-organic framework (Bi-MOF) as a catalyst for the catalytic production of formic acid from carbon dioxide, to which different ratios of tin metal elements were doped.

View Article and Find Full Text PDF