Asymmetric Synthesis of Optically Active Pyrazolidines or Pyrazoline Derivatives via Ni(II)-Bipyridine-,'-dioxide Complexes.

Org Lett

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Easily obtainable and efficient chiral -symmetric bipyridine-,'-dioxide ligands with Ni(OTf) were developed for application in catalyzing [3 + 2] cycloaddition reactions to synthesize optically active fused pyrazolidines or pyrazoline derivatives featuring three contiguous stereogenic centers by employing azomethine imines and α,β-unsaturated 2-acyl imidazoles, affording the corresponding adducts with the opposite configuration compared to previous synthetic products in 80-98% yields with 28-99% ee and >20:1 dr. In addition, subsequent amplification experiments and derivative transformations of the product further demonstrated the efficient catalytic performance of the catalyst Ni(II)-bipyridine-,'-dioxide complexes and the practicality of this synthesis methodology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c03454DOI Listing

Publication Analysis

Top Keywords

optically active
8
pyrazolidines pyrazoline
8
pyrazoline derivatives
8
niii-bipyridine-'-dioxide complexes
8
asymmetric synthesis
4
synthesis optically
4
active pyrazolidines
4
derivatives niii-bipyridine-'-dioxide
4
complexes easily
4
easily obtainable
4

Similar Publications

Pseudomonas aeruginosa (PA) represents a major cause of antimicrobial resistance-related morbidity and mortality. The recent emergence of highly fatal infections, caused by carbapenem-resistant PA, has called for novel antimicrobial therapies and strategies. In this study, we highlight the therapeutic potential of ε-poly-L-lysine (εPL), an antimicrobial polymer for treating extensively-and pan-drug-resistant-PA.

View Article and Find Full Text PDF

Durotaxis is a driver and potential therapeutic target in lung fibrosis and metastatic pancreatic cancer.

Nat Cell Biol

September 2025

Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Durotaxis, cell migration along stiffness gradients, is linked to embryonic development, tissue repair and disease. Despite solid in vitro evidence, its role in vivo remains largely speculative. Here we demonstrate that durotaxis actively drives disease progression in vivo in mouse models of lung fibrosis and metastatic pancreatic cancer.

View Article and Find Full Text PDF

Bright squeezed light in the kilohertz frequency band.

Light Sci Appl

September 2025

State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Opto-Electronics, Shanxi University, 030006, Taiyuan, China.

The dominant technical noise of a free-running laser practically limits bright squeezed light generation, particularly within the MHz band. To overcome this, we develop a comprehensive theoretical model for nonclassical power stabilization, and propose a novel bright squeezed light generation scheme incorporating hybrid power noise suppression. Our approach integrates broadband passive power stabilization with nonclassical active stabilization, extending the feedback bandwidth to MHz frequencies.

View Article and Find Full Text PDF

ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.

View Article and Find Full Text PDF

vtRNA1-1 drives regorafenib resistance by sustaining cancer stemness via impaired autophagy and altered svRNA biogenesis.

Int J Biol Macromol

September 2025

Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai, 200080, PR China; Shanghai Eye Diseases Prevention &Treatment Center/Shanghai Eye Hospital, School of Medicine, Tongji University, PR China. Electronic address

While vault RNA1-1 (vtRNA1-1) has been implicated in tumor biology, its specific role in cancer stemness and regorafenib resistance remains unexplored. In this study, we identify vtRNA1-1 as a critical regulator of cancer stemness and chemoresistance in Hepatocellular carcinoma (HCC). vtRNA1-1 enhances stemness properties by modulating the nuclear accumulation of Nanog, a core transcription factor.

View Article and Find Full Text PDF