A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predicting early recurrence in locally advanced gastric cancer after gastrectomy using CT-based deep learning model: a multicenter study. | LitMetric

Predicting early recurrence in locally advanced gastric cancer after gastrectomy using CT-based deep learning model: a multicenter study.

Int J Surg

Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Predicting early recurrence may help determine treatment strategies for LAGC. The goal is to develop a deep learning model for early recurrence prediction (DLER) based on preoperative multiphase computed tomography (CT) images and to further explore the underlying biological basis of the proposed model.

Materials And Methods: In this retrospective study, 620 LAGC patients from January 2015 to March 2023 were included in three medical centers and The Cancer Image Archive (TCIA). The DLER model was developed using DenseNet169 and multiphase 2.5D CT images, and then crucial clinical factors of early recurrence were integrated into the multilayer perceptron (MLP) classifier model (DLER MLP ). The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were applied to measure the performance of different models. The log-rank test was used to analyze survival outcomes. The genetic analysis was performed using RNA-sequencing data from TCIA.

Results: Using the MLP classifier combined with clinical factors, DLER MLP showed higher performance than DLER and clinical models in predicting early recurrence in the internal validation set (AUC: 0.891 vs. 0.797, 0.752) and two external test sets: test set 1 (0.814 vs. 0.666, 0.808) and test set 2 (0.834 vs. 0.756, 0.766). Early recurrence-free survival, disease-free survival, and overall survival can be stratified using the DLER MLP (all P < 0.001). High DLER MLP score is associated with upregulated tumor proliferation pathways (WNT, MYC, and KRAS signaling) and immune cell infiltration in the tumor microenvironment.

Conclusion: The DLER MLP based on CT images was able to predict early recurrence of patients with LAGC and served as a useful tool for optimizing treatment strategies and monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1097/JS9.0000000000002184DOI Listing

Publication Analysis

Top Keywords

early recurrence
24
predicting early
12
dler mlp
12
locally advanced
8
advanced gastric
8
gastric cancer
8
deep learning
8
learning model
8
clinical factors
8
mlp classifier
8

Similar Publications