Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The heterojunction photocatalysts composed of organic dyes and polymeric carbon nitride (PCN) have great potential for photocatalytic hydrogen evolution (PHE). However, serious charge recombination exists at the dye/PCN interface for the large gaps in time scales and the poor driving force of charge transfer process. Herein, both the excited triplet states of organic dyes with long lifetimes and strong internal electric fields (IEF) as charge transfer driving forces are achieved by the construction of high dipole moments with aromatic-core engineering, and modulation of dye aggregates by alkyl modification. Accordingly, PHE efficiency can achieve up to 833.49 μmol/h, over 36-fold that of PCN/Pt (23.34 μmol/h) under the same conditions. The relationship between molecular structures and PHE performance has been systematically investigated by the photophysical properties of organic dyes and the strength of IEF at dye/PCN interface. It afforded an efficient strategy to balance the charge transfer process in PHE systems, which can guide the molecular design of organic dyes with optimized aggregated behaviors and stable excited triplet states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202419850 | DOI Listing |