98%
921
2 minutes
20
The integration and interaction of cross-modal senses in brain neural networks can facilitate high-level cognitive functionalities. In this work, we proposed a bioinspired multisensory integration neural network (MINN) that integrates visual and audio senses for recognizing multimodal information across different sensory modalities. This deep learning-based model incorporates a cascading framework of parallel convolutional neural networks (CNNs) for extracting intrinsic features from visual and audio inputs, and a recurrent neural network (RNN) for multimodal information integration and interaction. The network was trained using synthetic training data generated for digital recognition tasks. It was revealed that the spatial and temporal features extracted from visual and audio inputs by CNNs were encoded in subspaces orthogonal with each other. In integration epoch, network state evolved along quasi-rotation-symmetric trajectories and a structural manifold with stable attractors was formed in RNN, supporting accurate cross-modal recognition. We further evaluated the robustness of the MINN algorithm with noisy inputs and asynchronous digital inputs. Experimental results demonstrated the superior performance of MINN for flexible integration and accurate recognition of multisensory information with distinct sense properties. The present results provide insights into the computational principles governing multisensory integration and a comprehensive neural network model for brain-inspired intelligence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655826 | PMC |
http://dx.doi.org/10.1007/s11571-023-09932-4 | DOI Listing |
Hum Brain Mapp
September 2025
Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy.
Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.
View Article and Find Full Text PDFACS Sens
September 2025
Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Materials Science & Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
Memtransistors are active analog memory devices utilizing ionic memristive materials as channel layers. Since their introduction, the term "memtransistor" has widely been adopted for transistors exhibiting nonvolatile memory characteristics. Currently, memtransistor devices possessing both transistor on/off functionality and nonvolatile memory characteristics include ferroelectric field-effect transistors (FeFETs) and charge-trap flash (floating gate), yet ionic memtransistors have not matched their performance.
View Article and Find Full Text PDFBr J Pharmacol
September 2025
Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
Background And Purpose: Neuroinflammation is increasingly recognised to contribute to drug-resistant epilepsy. Activation of ATP-gated P2X7 receptors has emerged as an important upstream mechanism, and increased P2X7 receptor expression is present in the seizure focus in rodent models and patients. Pharmacological antagonists of P2X7 receptors attenuate seizures in rodents, but this has not been explored in human neural networks.
View Article and Find Full Text PDF