98%
921
2 minutes
20
Objectives: This study investigated the effects of environmental enrichment (EE) on the behavior and histological alterations of rats with barrel cortex damage.
Methods: Forty-eight adult male rats were divided into Control (Ctrl), Lesion, Lesion+EE.S (Lesion+Standard Enriched Environment, and Lesion+EE.T (Lesion+Tactile Enriched Environment) groups. The animals were first anesthetized, and then, a cold lesion model was performed on the parietal cortex. After surgery, the rats were exposed to a standard enriched environment or enriched environment with tactile for 30 days. Their cognitive behaviors were assessed using an open field, novel texture discrimination, and Morris water maze (MWM) tests. In addition, a histological investigation was conducted to determine the degree of degeneration of hippocampal and somatosensory cortex neurons.
Results: The results demonstrated that rats with barrel cortex lesions revealed impairments in novel texture discrimination and MWM tests (P<0.001). Moreover, lesions increased neuronal degeneration in rats' barrel cortex and hippocampus (P< 0.001). Environmental enrichment improved behavioral deficits and decreased neuronal degeneration in the barrel cortex and hippocampus of rats with barrel cortex lesions (P<0.05).
Conclusion: The current study suggests that barrel cortex lesions create cognitive and behavioral deficits and neural degeneration in the barrel cortex and hippocampus; however, environmental enrichment could reverse these impairments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.physbeh.2024.114785 | DOI Listing |
Lab Anim Res
September 2025
Korea Model Animal Priority Center (KMPC), Seoul, Republic of Korea.
Background: Laboratory animal veterinarians play a crucial role as a bridge between the ethical use of laboratory animals and the advancement of scientific and medical knowledge in biomedical research. They alleviate pain and reduce distress through veterinary care of laboratory animals. Additionally, they enhance animal welfare by creating environments that mimic natural habitats through environmental enrichment and social associations.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
GFZ Helmholtz Centre for Geosciences, Potsdam, Germany.
Eukaryotic algae-dominated microbiomes thrive on the Greenland Ice Sheet (GrIS) in harsh environmental conditions, including low temperatures, high light, and low nutrient availability. Chlorophyte algae bloom on snow, while streptophyte algae dominate bare ice surfaces. Empirical data about the cellular mechanisms responsible for their survival in these extreme conditions are scarce.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
Bioinformatics Group, Centre for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt.
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC), accounting for nearly 40% of BC-related deaths. Emerging evidence suggests that the breast tissue microbiome harbors distinct microbial communities; however, the microbiome specific to TNBC remains largely unexplored. This study presents the first comprehensive meta-analysis of the TNBC tissue microbiome, consolidating 16S rRNA amplicon sequencing data from 200 BC samples across four independent cohorts.
View Article and Find Full Text PDFBioresour Technol
September 2025
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China. Electronic address:
Bioclogging from organic accumulation significantly limits efficiency and longevity of constructed wetlands (CWs). In this study, hematite was introduced to enhance the oxidation of organics by dissimilatory iron reduction (DIR). Compared to gravel CWs (G-CWs), hematite CWs (H-CWs) enhanced the removal of COD, ammonium, and phosphate by 12 %, 46 %, and 72 %, while reducing CH and NO emissions by 69 % and 36 %.
View Article and Find Full Text PDFEnviron Pollut
September 2025
State Key Laboratory of Loess Science, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China. Electronic address:
This study investigates the vertical profiles, pollution status and ecological risks of heavy metal(loid)s contamination in three sediment cores (N21, N03, and 38002) from the North Yellow Sea (NYS), with a focus on the influence of grain size effects on sedimentary profiles. The results revealed distinct vertical distribution patterns of heavy metal(loid)s content among the three sediment cores. Enrichment Factor (EF) and Geo-accumulation Index (I) assessments identified Sb as significantly enriched, indicating anthropogenic influence, whereas Co, Cr, Cu, Ni, and Zn primarily originated from natural weathering.
View Article and Find Full Text PDF