98%
921
2 minutes
20
The aging population is stimulating increased demand for dysphagia-oriented foods, yet most current options are made of ultra-processed macronutrients and lack high-quality protein and ω-3 fatty acids. This study explores the use of whole salmon fillets as a myofibrillar protein source to stabilize salmon backbone oil, creating ω-3-rich emulsion gels (50-60 vol%) for dysphasia individuals. Two-step high-pressure homogenization (HPH; 50 MPa) improved emulsion texture, storage stability, and swallowability (IDDSI level 4) by reducing oil droplet size (from 20 to 2 μm) and increasing elastic modulus by 6-8 times and viscosity by more than 10 times. These emulsion gels, rich in PUFAs, support cardiovascular health. HPH altered the structure of salmon myofibrillar proteins, transforming from micro-sized filament (2.5 μm) to assembled nano-sized micelle aggregate (400 nm) through reducing α-helix structure, crystallization, particle size, and aggregation. The protein interfacial stiffness and stability were improved, thus exhibiting greater oil droplet stabilization. The study offers a compelling reference for applying HPH in producing dysphagia-oriented products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.142460 | DOI Listing |
Food Chem
September 2025
Nantong Food and Drug Supervision and Inspection Center, Nantong 226001, PR China.
Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.
View Article and Find Full Text PDFFood Chem
September 2025
College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, Shandong, China. Electronic address:
The objective of this study was to investigate the enhancement mechanism of low-frequency magnetic field (LF-MF) on the gelation and structures of potato protein-linseed oil emulsion gel. Results indicated that the gel strength and water holding capacity of the gel induced by 6 mT LF-MF intensity were significantly increased from 0.33 N‧mm and 42.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Pharmaceutical Analysis, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra 400056, India. Electronic address:
Gum Arabic (GA), a naturally occurring polysaccharide, has emerged as a promising biomaterial for drug delivery systems (DDS) due to its high water solubility, emulsifying capacity, biocompatibility, and biodegradability. Its structural richness in arabinogalactan facilitates strong interactions with biomolecules, enabling the development of various drug formulations including hydrogels, nanoparticles, liposomes, and emulsions. GA-based DDS have demonstrated significant potential in enhancing the solubility of poorly water-soluble drugs, protecting bioactive compounds from degradation, and enabling sustained and controlled drug release.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China. Electronic address: wzj
For purpose of overcoming the negative impact of high-dose phenols on meat quality, xanthan gum (XG), a natural anionic polysaccharide, was employed to prevent the undesirable interaction between myofibrillar protein (MP) and gallic acid (GA, 150 μmol/g) and ameliorate the gel and emulsification characteristics of MP. XG dose-dependently alleviated the structural damage of MP caused by GA and reduced protein aggregation, manifested as the decrease in surface hydrophobicity, turbidity and aggregate size (p < 0.05) and increase in α-helix content and intrinsic fluorescence.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Food Science and Pharmaceutics, Zhejiang Ocean University, Zhoushan, 316022, China. Electronic address:
In the context of the escalating global emphasis on healthy food and sustainable development, non-covalent assembly systems formed between proteins and polysaccharides have garnered substantial attention. As natural biomolecules, proteins and polysaccharides synergize to form multiscale complexes through mechanisms such as electrostatic interactions, hydrophobic interactions, and hydrogen bonding, thus exhibiting enhanced stability and functionality. This review identifies five major research hotspots in this field using bibliometric analysis, covering complex formation mechanisms, performance enhancement strategies, and application-expansion directions.
View Article and Find Full Text PDF