A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A nomogram model for predicting advanced liver fibrosis in patients with hepatitis B: A multicenter study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Biopsy is the gold standard method for diagnosing liver fibrosis. FibroScan is a non-invasive method of diagnosing liver fibrosis, but it still faces some limitations. This study aimed to establish a nomogram model and identify patients at high risk of advanced liver fibrosis associated with hepatitis B infection.

Methods: Data were collected from 375 patients with hepatitis B who underwent liver biopsy. Patients were divided randomly into the training (n = 263) and validation sets (n = 112). Their demographic and clinical characteristics were analyzed using the least absolute shrinkage and selection operator regression (LASSO). A nomogram model was established to predict the fibrosis stage, and its performance was assessed using the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA) and was compared with other recognized models.

Results: In total, 209 patients with non-advanced fibrosis (S0-1) and 166 patients with advanced fibrosis (S ≥ 2) were included. Hyaluronic acid (HA), laminin, total cholesterol (TC), platelet, and age were entered into the nomogram model based on the LASSO analysis. The nomogram model for predicting advanced fibrosis exhibited a relatively high AUC in the training set. Compared with FIB4 and APRI, the nomogram model showed a better agreement between the actual status and predicted status based on the calibration curve. The nomogram model showed an AUC similar to FibroScan in the validation cohort, and showed high clinical net benefits in the training and validation sets.

Conclusion: Our nomogram model can help identify patients with hepatitis B and advanced liver fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2024.120102DOI Listing

Publication Analysis

Top Keywords

nomogram model
32
liver fibrosis
20
advanced liver
12
patients hepatitis
12
fibrosis
9
nomogram
8
model predicting
8
predicting advanced
8
method diagnosing
8
diagnosing liver
8

Similar Publications