Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Computational approaches using theoretical calculations and data scientific methods have become increasingly important in materials science and technology, with the development of relevant methodologies and algorithms, the availability of large materials data, and the enhancement of computer performance. As reviewed herein, we have developed computational methods for the design and prediction of inorganic materials with a particular focus on the exploration of semiconductors and dielectrics. High-throughput first-principles calculations are used to systematically and accurately predict the local atomic and electronic structures of polarons, point defects, surfaces, and interfaces, as well as bulk fundamental properties. Machine learning techniques are utilized to efficiently predict various material properties, construct phase diagrams, and search for materials satisfying target properties. These computational approaches have elucidated the mechanisms behind material functionalities and explored promising materials in combination with synthesis, characterization, and device fabrication. Examples include the development of ternary nitride semiconductors for potential optoelectronic and photovoltaic applications, the exploration of phosphide semiconductors and the optimization of heterointerfaces toward the improvement of phosphide-based photovoltaic cells, and the discovery of ferroelectricity in layered perovskite oxides and the theoretical understanding of its origin, all of which demonstrate the effectiveness of our computer-aided materials research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648147PMC
http://dx.doi.org/10.1080/14686996.2024.2423600DOI Listing

Publication Analysis

Top Keywords

semiconductors dielectrics
8
computational approaches
8
materials
6
theoretical data-driven
4
data-driven approaches
4
semiconductors
4
approaches semiconductors
4
dielectrics prediction
4
prediction experiment
4
experiment computational
4

Similar Publications

Giant two-photon upconversion from 2D exciton in doubly-resonant plasmonic nanocavity.

Light Sci Appl

September 2025

Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, China.

Photon upconversion through high harmonic generation, multiphoton absorption, Auger recombination and phonon scattering performs a vital role in energy conversion and renormalization. Considering the reduced dielectric screening and enhanced Coulomb interactions, semiconductor monolayers provide a promising platform to explore photon upconversion at room temperature. Additionally, two-photon upconversion was recently demonstrated as an emerging technique to probe the excitonic dark states due to the extraordinary selection rule compared with conventional excitation.

View Article and Find Full Text PDF

High-Performance Air-Stable Polymer Monolayer Transistors for Monolithic 3D CMOS logics.

Adv Mater

September 2025

State Key Laboratory of Fabrication Technologies for Integrated Circuits, Chinese Academy of Sciences, Beijing, 100029, China.

The monolayer transistor, where the semiconductor layer is a single molecular layer, offers an ideal platform for exploring transport mechanisms both theoretically and experimentally by eliminating the influence of spatially correlated microstructure. However, the structure-property relations in polymer monolayers remain poorly understood, leading to low transistor performance to date. Herein, a self-confinement effect is demonstrated in the polymer monolayer with nanofibrillar microstructures and edge-on orientation, as characterized by the 4D scanning confocal electron diffraction method.

View Article and Find Full Text PDF

A nanometer-scale multilayer gate insulator (GI) engineering strategy is introduced to simultaneously enhance the on-current and bias stability of amorphous InGaZnO thin-film transistors (a-IGZO TFTs). Atomic layer deposition supercycle modifications employ alternating layers of AlO, TiO, and SiO to optimize the gate-oxide stack. Each GI material is strategically selected for complementary functionalities: AlO improves the interfacial quality at both the GI/semiconductor and GI/metal interfaces, thereby enhancing device stability and performance; TiO increases the overall dielectric constant; and SiO suppresses leakage current by serving as a high-energy barrier between AlO and TiO.

View Article and Find Full Text PDF

Wafer-Scale Demonstration of BEOL-Compatible Ambipolar MoS Devices Enabled by Plasma-Enhanced Atomic Layer Deposition.

ACS Appl Mater Interfaces

September 2025

Nanoelectronics Graphene and 2D Materials Laboratory, CITIC-UGR, Department of Electronics, University of Granada, Granada 18014, Spain.

The relentless scaling of semiconductor technology demands materials beyond silicon to sustain performance improvements. Transition metal dichalcogenides (TMDs), particularly MoS, offer excellent electronic properties; however, achieving scalable and CMOS-compatible fabrication remains a critical challenge. Here, we demonstrate a scalable and BEOL-compatible approach for the direct wafer-scale growth of MoS devices using plasma-enhanced atomic layer deposition (PE-ALD) at temperatures below 450 °C, fully compliant with CMOS thermal budgets.

View Article and Find Full Text PDF

Achieving Efficient Solar Hydrogen Production via a Three-Motif Molecular Junction with Spatially Separated Dual Reduction Sites.

ACS Nano

September 2025

Zhuhai Key Laboratory of Optoelectronic Functional Materials and Membrane Technology, School of Chemical Engineering and Technology/School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.

Organic semiconductors are very attractive photocatalysts for the production of solar fuels. However, their development is greatly plagued by limited visible light absorption and severe restriction of photoexcited charge carrier separation and transfer caused by the exciton effect resulting from inherent dielectric constraints. Herein, a three-motif molecular junction hydrogen evolution photocatalyst is constructed by linking a donor-acceptor-donor (D-A-D) molecule integrating the photosensitizer unit and the redox unit with holey carbon nitride sheets (HCNS) as a second electron acceptor unit (A) based on the covalent strategy.

View Article and Find Full Text PDF