Self-template manufacturing of on-skin electrodes with 3D multi-channel structure for standard 3-limb-lead ECG suit.

Microsyst Nanoeng

Guangdong Key Laboratory of Precision Equipment and Manufacturing Technology, South China University of Technology, Guangzhou, 510641, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wearable electrocardiogram (ECG) devices are the mainstream technology in the diagnosis of various cardiovascular diseases, in which soft, flexible, permeable electrodes are the key link in human-machine interface to capture bioelectrical signals. Herein, we propose a self-template strategy to fabricate silver-coated fiber/silicone (AgCF-S) electrodes. With a simple dissolving-curing-redissolving process, the polyvinyl acetate shell around the AgCF core is in-situ removed to form a three-dimensional (3D) multi-channel structure. The conductive fibers overlap each other and pass through the silicon substrate in a network state, so that the electrode can be bent to 180° or stretched to 30%. The 3D multi-channels in AgCF-S adhesive is further coupled with a Kirigami-design structure of flexible substrate, to maintain high flexibility without sacrificing air-permeability, enabling an excellent water evaporation rate of 1.8 μg/mm/min, and non-allergenic adhere on pigskin after 24 h. Combined with the self-developed standard 3-limb-lead ECG suit, multi-lead signals with high signal-to-noise ratio (SNR) and low variance (σ), can be transmitted in real-time via Bluetooth and displayed in the client. Typical heart diseases such as coronary, arrhythmia, myocardial infarction, etc., are detected by our ECG equipment, revealing a huge promise in future medical electronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649698PMC
http://dx.doi.org/10.1038/s41378-024-00838-7DOI Listing

Publication Analysis

Top Keywords

multi-channel structure
8
standard 3-limb-lead
8
3-limb-lead ecg
8
ecg suit
8
self-template manufacturing
4
manufacturing on-skin
4
on-skin electrodes
4
electrodes multi-channel
4
structure standard
4
ecg
4

Similar Publications

Linear magnetic nanoparticle structures as key feature in magnetic particle imaging.

Phys Med Biol

September 2025

Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University Medical Faculty, Pauwelsstraße 20, Aachen, 52074, GERMANY.

Objective: Magnetic particle imaging (MPI) opens huge possibilities in image-guided therapy. Its effectiveness is strongly influenced by the quality of the magnetic nanoparticles (MNP) used as tracers. Besides MNP optimization following different synthesis routes, MNP assembly into linear structures can significantly enhance their performance in MPI.

View Article and Find Full Text PDF

Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.

View Article and Find Full Text PDF

Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa cause severe vision impairment, while current electrical stimulation therapies are limited by poor spatial targeting precision. As a promising non-invasive alternative, the efficacy of temporal interference stimulation (TIS) for retinal targeting depends on optimized multi-electrode parameters. This study reconstructed a whole-head finite element model with detailed ocular structures and applied reinforcement learning (RL)-based multi-channel electrode parameter optimization to retinal stimulation.

View Article and Find Full Text PDF

The multi-channel synchronous stimulator, aimed at achieving efficient and precise neural regulation, typically utilizes a monolithic microelectrode array structure. However, this structure limits the flexibility of electrode placement and the expansion to a large number of nodes, particularly in discontinuous locations. To address this, this paper designs a distributed passive micro-magnetic stimulation (DP-μMS) neuro-regulation device with multi-brain region collaborative stimulation functionality.

View Article and Find Full Text PDF

Background: Short videos are a way that parents get health information. It is unclear how people seek health information in short videos on musculoskeletal conditions in children.

Objective: To investigate the health information needs of parents of children with musculoskeletal disorders and to examine the factors that influence their perceptions of that information.

View Article and Find Full Text PDF