Coil-Library-Derived Amino-Acid-Specific Side-Chain χ Dihedral Angle Potentials for AMBER-Type Protein Force Field.

J Chem Theory Comput

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The successful simulation of proteins by molecular dynamics (MD) critically depends on the accuracy of the applied force field. Here, we modify the AMBER-family ff99SBnmr2 force field through improvements to the side-chain χ dihedral angle potentials in a residue-specific manner using conformational dihedral angle distributions from an experimental coil library as targets. Based on significant deviations observed for the parent force field with respect to the coil library, the χ dihedral angle potentials of seven amino acids were modified, namely, Val, Ser, His, Asn, Trp, Tyr, and Phe. The new force field, named ff99SBnmr2Chi1, was benchmarked against NMR-derived χ rotamer populations of denatured proteins, overall resulting in much better agreement and without any noticeable adverse consequences on the quality of the simulation of folded proteins. The new force field should allow more realistic modeling of protein side-chain properties by MD of both folded and unfolded protein systems, such as for the better in-silico characterization of protein-protein and protein-ligand interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736797PMC
http://dx.doi.org/10.1021/acs.jctc.4c00889DOI Listing

Publication Analysis

Top Keywords

force field
24
dihedral angle
16
angle potentials
12
side-chain dihedral
8
coil library
8
force
6
field
6
coil-library-derived amino-acid-specific
4
amino-acid-specific side-chain
4
dihedral
4

Similar Publications

Background: It is unclear whether the current North Atlantic Treaty Organization (NATO) trauma system will be effective in the setting of Large-Scale Combat Operations (LSCO). We sought to model the efficacy of the NATO trauma system in the setting of LSCO. We also intended to model novel scenarios that could better adapt the current system to LSCO.

View Article and Find Full Text PDF

With approximately 90% of industrial reactions occurring on surfaces, the role of heterogeneous catalysts is paramount. Currently, accurate surface exposure prediction is vital for heterogeneous catalyst design, but it is hindered by the high costs of experimental and computational methods. Here we introduce a foundation force-field-based model for predicting surface exposure and synthesizability (SurFF) across intermetallic crystals, which are essential materials for heterogeneous catalysts.

View Article and Find Full Text PDF

Passive Wake Differentiation by Seal Vibrissae in Response to Independently Oscillating Upstream Objects.

Bioinspir Biomim

September 2025

Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, Massachusetts, 02747-2300, UNITED STATES.

Harbor seals possess a remarkable ability to detect hydrodynamic footprints left by moving objects, even long after the objects have passed, through interactions between wake flows and their uniquely shaped whiskers. While the flow-induced vibration (FIV) of harbor seal whisker models has been extensively studied, their response to unsteady wakes generated by upstream moving bodies remains poorly understood. This study investigates the wake-induced vibration (WIV) of a flexibly mounted harbor seal-inspired whisker positioned downstream of a forced-oscillating circular cylinder, simulating the hydrodynamic footprint of a moving object.

View Article and Find Full Text PDF

In situ rapid gelation and osmotic dehydration-assisted preparation of graphene aerogel and its application in piezoresistive sensors.

J Colloid Interface Sci

September 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.. Electronic address:

This study presents a straightforward and rapid method for preparing graphene aerogel by integrating a sodium alginate (SA)-metal ion crosslinking system, a bubble template, and an osmotic dehydration process. Graphene oxide (GO) nanosheets were dispersed into the solution crosslinked by SA and metal ions, leading to rapid gelation of GO under ambient conditions. To minimize structural damage to the porous network caused by water molecules during the drying process, an osmotic dehydration technique was employed as an auxiliary drying method.

View Article and Find Full Text PDF

The study of the self-assembly of surfactants in aqueous solutions, though a traditional field, remains fascinating and full of novelty. In this article, the anionic perfluorodecanoic acid surfactant (PFA) is separately complexed with three hydroxyalkylamines (monoethanolamine (MEA), diethylamine (DEA), and triethanolamine (TEA)) in aqueous solutions. The transformation of aggregate morphologies from spherical unilamellar to nanotubes and then to spherical bilamellar is observed at room temperature, which is confirmed by cryo-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF