98%
921
2 minutes
20
In this work, we developed a highly accurate and sensitive two-emission fluorescence sensor, integrated with a smartphone, for the rapid detection of Cu and Cr in aqueous solution. This sensor comprised AgInS/ZnS quantum dots (AIS/ZnS QDs) and metal-AIEgen frameworks (MAFs). Upon mixing in a specific ratio, the hybrid system can emit a white light when exposed to a UV lamp (365 nm). The system demonstrates distinct fluorescence variations upon interaction with Cr or Cu. Specifically, the sensor transitions from white to red or blue when exposed to Cr or Cu, respectively. By utilizing smartphone color recognition software to measure the ratio of red to blue (R/B) value of the solution, the detection ranges of the dual response sensor for Cr and Cu are established at 250-5000 nM and 100-2500 nM, with detection limits of 168.4 nM and 101.1 nM, respectively. The practicality of the sensor is validated through quantitative measurement of RGB values from real water samples, including drinking water, tap water, and lake water. Consequently, this sensor exhibits significant potential for point-of-care detection, attributable to its low cost, portability, and high specificity and sensitivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.125573 | DOI Listing |
Traffic Inj Prev
September 2025
Chongqing Jianzhu College, Chongqing, P.R. China.
Purpose: The monotonous lighting environment in extra-long tunnels often induces mind-wandering in drivers. To address this issue, this study explores effective strategies to optimize tunnel lighting environments by configuring various background colors and special lighting zones to enhance the alertness of young drivers and ensure driving safety.
Methods: A virtual driving simulator was utilized to carry out the experiment.
Int J Dermatol
July 2025
Brigham and Women's Hospital, Boston, Massachusetts, USA.
ACS Synth Biol
September 2025
ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD 4000, Australia.
Fluorescent proteins (FPs) are commonly used as reporters to examine intracellular genetic, molecular, and biochemical status. Flow cytometry is a powerful technique for accurate quantification of single-cell fluorescent levels. Here, we characterize green, red, and blue FPs for use in yeast .
View Article and Find Full Text PDFJ Org Chem
September 2025
Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski blvd, Sofia 1756, Bulgaria.
Herein, a novel class of azo photoswitches based on a phthalimide with an azo bond to the imide ring is presented, exhibiting reversible isomerization under a broad range of visible light irradiation from 405 to 530 nm. Structural variations with heteroaryl or aryl segments attached to the 3-phthalylazo unit exhibit distinct spectral features, such as red-shifted absorption, well-separated absorption bands, and tunable stability of the metastable isomer, ranging from seconds to days. They differ drastically in the half-life of -isomer stability, ranging from several seconds (-methylpyrrole) to days (-methylimidazole).
View Article and Find Full Text PDFMicrob Cell Fact
September 2025
Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31257, Egypt.
Background And Aim: Synthetic dyes in the textile industry pose risks to human health and environmental safety. The current study aims to examine the efficacy of a novel esterase derived from an endophyte fungus in decolorizing diverse dyes, focusing on its production, purification, optimization, and characterization.
Results: Trichoderma afroharzianum AUMC16433, a novel fungal endophyte with esterase-producing ability, was first detected from the cladodes of Opuntia ficus indica by ITS-rRNA sequencing.