Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anode-less lithium metal batteries (ALLMB) are promising candidates for energy storage applications owing to high-energy-density and safety characteristics. However, the unstable solid electrolyte interphase (SEI) formed on anode copper current collector (CuCC) leads to poor reversibility of uneven lithium deposition/stripping. Though the well-known knowledge of lithium salt-derived inorganic-rich SEI (iSEI) benefiting uniform lithium deposition, how to design a lithium salt-philic CuCC with undiscovered salt-philic facet that favors lithium salt adsorption and catalyzing salt decomposition into iSEI, remains unexplored yet. Here, a self-selective and iSEI-catalyzing CuCC design is developed by using lithium salt as surface-controlling agent in CuCC electrodeposition process, self-selecting out and guiding unidirectional Cu(220) facet growth as the most salt-philic facets of CuCC. This self-selected Cu(220) facet promotes the salt adsorption and formation of salt decomposition-derived iSEI in battery, thus improving the lithium plating/stripping coulombic efficiency from 99.25% to 99.50% (stable within 400 cycles), and the capacity decay rate of ALLMB is also reduced by 42.4% within 100 cycles. Practical mass-productivity of this self-selective CuCC for 350 Wh kg pouch-cell fabrication is also demonstrated, providing a new self-selective current collector design strategy for improving selectivity and catalyzation of desired chemical reaction, important for high-selectivity electrochemical reaction system construction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202413420DOI Listing

Publication Analysis

Top Keywords

current collector
12
lithium
9
copper current
8
collector design
8
anode-less lithium
8
lithium metal
8
metal batteries
8
lithium salt
8
salt adsorption
8
cu220 facet
8

Similar Publications

Influence of the Metal Support─Catalyst Contact on the Performance of NiO-Based O Evolution Electrocatalysts.

ACS Appl Mater Interfaces

September 2025

Surface Science Laboratory, Department of Materials and Geosciences, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.

The performance of NiO-based electrocatalysts for the oxygen evolution reaction (OER) is strongly influenced by the interface between the metal support (current collector) and the catalyst layer, which modulates electronic properties and electrochemical activity. This study systematically investigates the solid-solid interface behavior of NiO thin films prepared by reactive magnetron sputtering on Pt, Au, and Ni, followed by electrochemical characterization. Stepwise NiO deposition and X-ray photoelectron spectroscopy reveal distinct band alignment and electronic structure differences at the metal-catalyst interface.

View Article and Find Full Text PDF

Ultrathin amorphous materials are promising counterparts to 2D crystalline materials, yet their properties and functionalities remain poorly understood. Amorphous boron nitride (aBN) has attracted attention for its ultralow dielectric constant and superior manufacturability compared with hexagonal boron nitride. Here, we demonstrate wafer-scale growth of ultrathin aBN films with exceptional thickness and composition uniformity using capacitively coupled plasma-chemical vapor deposition (CCP-CVD) at 400 °C.

View Article and Find Full Text PDF

Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.

View Article and Find Full Text PDF

Understanding the electrochemical extraction and deposition of lithium (Li) from cathode is crucial for advancing anode-free solid-state batteries (AFSSBs). Herein, cryo-transmission electron microscopy (cryo-TEM) and electrochemical studies are employed to investigate how current collector surface properties, current densities, and cathode loadings influence the morphology of fresh electrochemically deposited Li and the electrochemical performance in sulfide-based AFSSBs. Cryo-TEM reveals that Cu current collectors induce irregular, dendritic Li deposits due to their lithiophobic nature and reactivity with LiPSCl (LPSC), while Ni and Au facilitate more uniform, planar-like Li growth.

View Article and Find Full Text PDF

Scalable One-Step Synthesis of Graphene/Polyaniline Films via Dual-Functional HSO for Supercapacitor Electrodes.

Langmuir

September 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.

Supercapacitors serve as an important complement to batteries in sustainable energy storage and utilization systems, necessitating the efficient preparation of high-performance electrodes for practical applications. Here, we present a scalable one-step strategy for fabricating integrated graphene/polyaniline electrodes directly on current collectors, enabled by the dual functionality of HSO in a rapid 20 min process. Initially, dilute HSO acts as a protonation medium to facilitate the oxidative polymerization of aniline by ammonium persulfate.

View Article and Find Full Text PDF