98%
921
2 minutes
20
Background: The goal is to identify methylation sites linked to transmission and their impact on host gene expression and HBV spread, aiming to uncover new molecular targets for preventing and treating intrauterine HBV infection.
Methods: This study recruited 1205 infants born to HBsAg-positive mothers in Liuzhou City, China, between July 2023 and January 2024. Infants were followed up at 7-12 months of age and classified as HBsAg-positive (case, n = 5) or HBsAg-negative (control, n = 14) based on serological testing. Peripheral blood samples were collected for DNA extraction. DNA methylation profiling was performed using the Illumina Infinium MethylationEPIC BeadChip (850 K). Data were processed using the ChAMP package in R, including quality control, normalization, and identification of Differentially Methylated Positions (DMPs) and differentially methylated regions (DMRs). DMPs and DMRs were annotated using ANNOVAR 2018Apr16, and GO enrichment analysis was conducted using DAVID. The study was approved by the Guangxi University of Chinese Medicine Ethics Committee, and informed consent was obtained.
Results: We identified 734,978 DMPs and 660 DMRs, with 1813 DMPs and 221 DMRs showing significant differences between groups. HBV-infected infants exhibited lower overall genomic methylation levels, with significant concentrations in gene body regions and CpG islands. GO enrichment analysis indicated that differentially methylated genes were enriched in processes related to cell adhesion and calcium ion binding.
Conclusions: Prenatal HBV exposure was associated with significant infant hypomethylation, particularly in regulatory regions like TSS1500, TSS200, and CpG islands, potentially impacting gene expression. Enrichment of immune-related pathways among differentially methylated genes suggests that HBV may alter infant immune development through epigenetic modifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meegid.2024.105705 | DOI Listing |
Epigenomics
September 2025
College of Physical Education, Yangzhou University, Yangzhou, China.
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder lacking objective biomarkers for early diagnosis. DNA methylation is a promising epigenetic marker, and machine learning offers a data-driven classification approach. However, few studies have examined whole-blood, genome-wide DNA methylation profiles for ASD diagnosis in school-aged children.
View Article and Find Full Text PDFGen Physiol Biophys
September 2025
The Second Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.
View Article and Find Full Text PDFPLoS One
September 2025
Orthopaedics, Hebei Medical University Third Hospital, Shijiazhuang, China.
Enoxaparin sodium (ES), a low molecular weight heparin derivative, has recently been recognized for its diverse biological activities. In particular, the ability of heparin to modulate inflammation has been utilized to enhance the biocompatibility of bone implant materials. In this study, we utilized poly (methyl methacrylate) (PMMA), a drug loading bone implant material, as a matrix and combined this with enoxaparin sodium (ES) to create enoxaparin sodium PMMA cement (ES-PMMA) to investigate the regulatory effects of ES on inflammatory responses in bone tissue from an animal model.
View Article and Find Full Text PDFNAR Cancer
September 2025
Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
Noncoding RNAs play pivotal roles in tumorigenesis and cancer progression. Recent evidence has identified vault RNAs (vtRNAs) as critical regulators of cellular homeostasis. The human genome encodes four vtRNA paralogs, which are differentially expressed in cancer tissues and contribute to tumor development.
View Article and Find Full Text PDFData Brief
October 2025
Department of Endocrinology, the First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
This dataset focuses on N6-Methyladenosine (m6A) RNA methylation in papillary thyroid carcinoma (PTC) without autoimmune thyroid disease (AITD). Emerging evidence suggests that m6A modification was associated with the occurrence and progression of both thyroid carcinoma and AITD. Given the substantial clinical overlap between thyroid carcinoma (particularly PTC) and AITD, rigorous exclusion of autoimmune confounding factors is essential to isolate the distinct role of m6A modifications in driving thyroid carcinogenesis and progression.
View Article and Find Full Text PDF