98%
921
2 minutes
20
Introduction: Mucosal-associated invariant T (MAIT) cells are a predominant subset of innate-like T cells in humans, characterized by diverse gene expression profiles and functional capabilities. However, the factors influencing the transcriptomes and effector functions of MAIT cells, particularly at mucosal barriers, remain largely unclear.
Methods: In this study, we employed single-cell RNA sequencing (scRNA-seq) and functional assays to investigate the transcriptomic and functional characteristics of intestinal MAIT cells in mouse models during aging. We also extended scRNA-seq analysis to human intestinal MAIT cells to compare their gene expression patterns with those observed in aged mice.
Results: Our findings demonstrated that the transcriptomes and functional capabilities of intestinal MAIT cells shifted from MAIT17 to MAIT1 profiles with aging in mouse models, with notable changes in the production of cytotoxic molecules. Further scRNA-seq analysis of human intestinal MAIT cells revealed a segregation into MAIT1 and MAIT17 subsets, displaying gene expression patterns that mirrored those seen in aged mouse models. The transcription factor RORγt was expressed in both MAIT1 and MAIT17 cells, acting to repress IFNγ production while promoting IL17 expression. Moreover, reduced expression of RORC and Il17A was correlated with poorer survival outcomes in colorectal cancer patients.
Discussion: These results suggest that aging induces a functional shift between MAIT1 and MAIT17 cells, which may be influenced by transcriptional regulators like RORγt. The observed alterations in MAIT cell activity could potentially impact disease prognosis, particularly in colorectal cancer. This study provides new insights into the dynamics of MAIT cell responses at mucosal barriers, highlighting possible therapeutic targets for modulating MAIT cell functions in aging and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634854 | PMC |
http://dx.doi.org/10.3389/fimmu.2024.1504806 | DOI Listing |
Nat Rev Immunol
September 2025
La Jolla Institute for Immunology, La Jolla, CA, USA.
Immunometabolism, the intersection of cellular metabolism and immune function, has revolutionized our understanding of T cell biology. Changes in cellular metabolism help guide the development of thymocytes and the transition of T cells from naive to effector, memory and tissue-resident states. Innate-like T cells are a unique group of T cells with special characteristics.
View Article and Find Full Text PDFFront Immunol
September 2025
Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States.
Innate-like T cells (ILT), including γδ T cells (Vδ2s), Natural Killer T cells (NKTs) and Mucosal-associated Invariant T cells (MAITs), integrate innate and adaptive immunity, playing important roles in homeostatic conditions as well as during infection or inflammation. ILT are present on both sides of the fetal-maternal interface, but our knowledge of their phenotypical and functional features in neonates is limited. Using spectral flow cytometry we characterized cord blood ILT in neonates born to healthy women and women living with HIV.
View Article and Find Full Text PDFTissue microenvironment characteristics associated with elevated risk of colorectal cancer (CRC) in Lynch syndrome (LS) are poorly characterized. We applied the multimodal single cell sequencing platform ExCITE-seq to define the colonic cellular composition and transcriptome of LS carriers with and without a history of CRC compared with general population controls. Our analysis revealed widespread remodeling in LS that included striking expansion of epithelial stem and progenitor cells, and loss of fibroblast populations.
View Article and Find Full Text PDFTissue microenvironment characteristics associated with elevated risk of colorectal cancer (CRC) in Lynch syndrome (LS) are poorly characterized. We applied the multimodal single cell sequencing platform ExCITE-seq to define the colonic cellular composition and transcriptome of LS carriers with and without a history of CRC compared with general population controls. Our analysis revealed widespread remodeling in LS that included striking expansion of epithelial stem and progenitor cells, and loss of fibroblast populations.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China.
Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by sustained synovial inflammation and the gradual destruction of joint structures. Although conventional T cells have historically been viewed as central to RA pathogenesis, increasing attention has recently focused on unconventional T cell subsets, such as natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells, and gamma delta T (γδ T) cells. Functioning as a bridge between innate and adaptive immunity, these cells contribute to RA immunopathogenesis by producing cytokines, exerting cytotoxic effects, and interacting with various immune and stromal cells.
View Article and Find Full Text PDF