Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spinal cord ischemia-reperfusion injury, a severe form of spinal cord damage, can lead to sensory and motor dysfunction. This injury often occurs after traumatic events, spinal cord surgeries, or thoracoabdominal aortic surgeries. The unpredictable nature of this condition, combined with limited treatment options, poses a significant burden on patients, their families, and society. Spinal cord ischemia-reperfusion injury leads to reduced neuronal regenerative capacity and complex pathological processes. In contrast, mitophagy is crucial for degrading damaged mitochondria, thereby supporting neuronal metabolism and energy supply. However, while moderate mitophagy can be beneficial in the context of spinal cord ischemia-reperfusion injury, excessive mitophagy may be detrimental. Therefore, this review aims to investigate the potential mechanisms and regulators of mitophagy involved in the pathological processes of spinal cord ischemia-reperfusion injury. The goal is to provide a comprehensive understanding of recent advancements in mitophagy related to spinal cord ischemia-reperfusion injury and clarify its potential clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12220710PMC
http://dx.doi.org/10.4103/NRR.NRR-D-24-00668DOI Listing

Publication Analysis

Top Keywords

spinal cord
32
cord ischemia-reperfusion
24
ischemia-reperfusion injury
24
spinal
8
mitophagy spinal
8
cord
8
pathological processes
8
injury
7
ischemia-reperfusion
6
mitophagy
5

Similar Publications

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Background And Purpose: White matter hyperintensity (WMH) impairs cognitive function but is not evident in the early stage, raising the need to explore the underlying mechanism. We aimed to investigate the potential role of network structure-function coupling (SC-FC coupling) in cognitive performance of WMH patients.

Methods: A total of 617 participants with WMH (mean age = 61 [SD = 8]; 287 females [46.

View Article and Find Full Text PDF

Purpose: Postoperative delirium (POD) remains poorly understood in terms of predictors and underlying mechanisms. This review summarized emerging evidence on the association between brain microstructural alterations and POD.

Method: This is a narrative review, describing the microstructural changes in aging brain, microstructural MRI findings, relationship among microstructural alterations, cognitive reserve and POD, and potential interventions targeting microstructure.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate the relationship between tissue bridges and bladder and bowel outcomes in chronic cervical spinal cord injury (SCI).

Methods: Between July 2020 and January 2024, 44 patients with chronic cervical SCI were retrospectively included in this cross-sectional study at a specialized SCI center. Lesion severity was assessed by tissue bridges, lesion length, lesion width, and lesion area.

View Article and Find Full Text PDF

Astrocytic monoamine oxidase B (MAOB)-gamma-aminobutyric acid (GABA) axis as a molecular brake on repair following spinal cord injury.

Signal Transduct Target Ther

September 2025

Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, Seoul, Republic of Korea.

Neuroregeneration and remyelination rarely occur in the adult mammalian brain and spinal cord following central nervous system (CNS) injury. The glial scar has been proposed as a major contributor to this failure in the regenerative process. However, its underlying molecular and cellular mechanisms remain unclear.

View Article and Find Full Text PDF