Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrogen is an essential energy resource, playing a pivotal role in advancing a sustainable future. Electrolysis of seawater shows great potential for large-scale hydrogen production but encounters challenges such as electrode corrosion caused by chlorine evolution. Herein, a durable CoCO/CoFe layered double hydroxide (LDH) electrocatalyst is presented for alkaline seawater oxidation, showcasing resistance to corrosion and stable operation exceeding 1,000 h at a high current density of 1 A cm. The results indicate that CoCO within the electrocatalyst undergoes conversion into CoOOH and releases CO during electrolysis. The incorporation of CO within its layers and the anchoring of the electrocatalyst's surface prevent the adverse adsorption of chloride ions, enhancing resistance to chloride ion corrosion, thereby protecting the active sites of the electrocatalyst effectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202409627DOI Listing

Publication Analysis

Top Keywords

seawater oxidation
8
coco/cofe layered
8
layered double
8
double hydroxide
8
ultrastable seawater
4
oxidation ampere-level
4
ampere-level current
4
current densities
4
densities corrosion-resistant
4
corrosion-resistant coco/cofe
4

Similar Publications

Constructing heterogeneous dual-site catalysts is anticipated for oxygen evolution reaction (OER). However, compared to the adsorbate evolution mechanism (AEM), the triggering oxide pathway mechanism (OPM) for catalysts poses challenges due to elusive structural evolution and low intrinsic activity. Herein, considering the distinct adsorption propensity of heterogeneous Ni-Fe sites toward differential intermediates (OH-O), the PO-induced deep reconstruction triggers a dual-site Ni-Fe discrepant oxide pathway mechanism (DOPM) for R-PO-NiCoFeOOH.

View Article and Find Full Text PDF

Transcriptomic Analysis of Litopenaeus vannamei: Understanding Salinity Adaptation Mechanisms in Freshwater Environments.

Mar Biotechnol (NY)

September 2025

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.

Litopenaeus vannamei exhibits strong salinity adaptation; however, its survival and growth are significantly reduced in freshwater environments. To investigate the response mechanisms of L. vannamei to freshwater conditions, gill tissues from shrimp cultured for 30 days in both freshwater and seawater environments were used as experimental material in this study.

View Article and Find Full Text PDF

Metal pollution, particularly chromium, in water and food samples is a critical issue due to its transfer to the human body through the food chain and its threat to human health. Among the chromium species that can be found in water samples, chromates are classified as toxic by scientific authorities. Spectroscopic instruments have limitations in metal speciation analysis, and there is a need for suitable methods that allow chromium speciation.

View Article and Find Full Text PDF

Determining microbial extracellular alkaline phosphatase activity in seawater based on surface-enhanced Raman spectroscopy.

Mar Environ Res

September 2025

Shanghai Engineering Research Center of Hadal Science and Technology, College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. Electronic

Microbial extracellular alkaline phosphatase (ALP) plays a significant role in marine phosphorus cycle. Therefore, it is of paramount importance to accurately and rapidly measure ALP activity (APA) in seawater. However, the applications of the existing APA measurement methods are constrained by cumbersome pre-processing, lengthy measurement times, and the influence of colored substances or suspended particles in seawater samples, which limit our accurate understanding of the marine phosphorus cycle.

View Article and Find Full Text PDF

The Early Paleozoic radiation of diverse animal life is commonly connected to a well-ventilated global ocean. Yet the oxygenation history of Paleozoic deep oceans remains debated. Using thallium (Tl) isotope ratios in deep-marine mudrocks, we reconstruct the history of deep marine oxygenation from ~485 to 380 million years ago.

View Article and Find Full Text PDF