Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rear-end collisions frequently occurred in the entrance zone of expressway tunnel, necessitating enhanced traffic safety through speed guidance. However, existing speed optimization models mainly focus on urban signal-controlled intersections or expressway weaving zones, neglecting research on speed optimization in expressway tunnel entrances. This paper addresses this gap by proposing a framework for a speed guidance model in the entrance zone of expressway tunnels under a mixed traffic environment, comprising both Connected and Autonomous Vehicles (CAVs) and Human-driven Vehicles (HVs). Firstly, a CAV speed optimization model is established based on a shooting heuristic algorithm. The model targets the minimization of the weighted sum of the speed difference between adjacent vehicles and the time taken to reach the tunnel entrance. The model's constraints incorporate safe following distances, speed, and acceleration limits. For HVs, speed trajectories are determined using the Intelligent Driver Model (IDM). The CAV speed optimization model, represented as a mixed-integer nonlinear optimization problem, is solved using A Mathematical Programming Language (AMPL) and the BONMIN solver. Safety performance is evaluated using Time-to-Collision (TTC) and speed standard deviation (SD) metrics. Case study results show a significant decrease in SD as the CAV penetration rate increases, with a 58.38% reduction from 0% to 100%. The impact on SD and mean TTC is most pronounced when the CAV penetration rate is between 0% and 40%, compared to rates above 40%. The minimum TTC values at different CAV penetration rates consistently exceed the safety threshold TTC*, confirming the effectiveness of the proposed control method in enhanced safety. Sensitivity analysis further supports these findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627392PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0314044PLOS

Publication Analysis

Top Keywords

speed optimization
20
optimization model
12
expressway tunnel
12
cav penetration
12
speed
11
connected autonomous
8
autonomous vehicles
8
tunnel entrance
8
mixed traffic
8
traffic environment
8

Similar Publications

Modal analysis and optimization of swimming active filaments.

Philos Trans A Math Phys Eng Sci

September 2025

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK.

Active flexible filaments form the classical continuum framework for modelling the locomotion of spermatozoa and algae driven by the periodic oscillation of flagella. This framework also applies to the locomotion of various artificial swimmers. Classical studies have quantified the relationship between internal forcing (localized or distributed internal moments or forces) and external output (filament shape and swimming speed).

View Article and Find Full Text PDF

In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.

View Article and Find Full Text PDF

Field Driven Solid-State Defect Control of Bilayer Switching Devices: Ionic Transport Kinetics within Layers and across the Interfaces.

ACS Appl Mater Interfaces

September 2025

Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Nanoionic devices, crucial for neuromorphic computing and ionically enabled functional actuators, are often kinetically limited. In bilayer configurations, experimentally deconvoluting ion transport within individual layers from the kinetics of transfer across solid-solid interfaces, however, remains a challenge, hindering rational device optimization. Here, we extend the dynamic current-voltage (-) technique to a PrCeO/LaCeCuO (PCO/LCCO) bilayer system, enabling the isolation and quantification of distinct ion transport processes.

View Article and Find Full Text PDF

In dairy products, Bacillus subtilis (B. subtilis) is considered a harmful spoilage bacterium. Consequently, it is imperative to establish highly sensitive and selective approaches for detecting B.

View Article and Find Full Text PDF

A distributed time-varying neurodynamic algorithm for multi-UAV collaborative target tracking problem in maritime search and rescue.

ISA Trans

September 2025

State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, No. 95 ZhongGuanCun East Road, HaiDian District, Beijing, PR China. Electronic address:

This work investigates the problem of collaborative target tracking by multiple unmanned aerial vehicles (UAVs) in maritime search and rescue. A class of time-varying (TV) convex optimization problems with inequality constraints is presented. In contrast to existing studies that address UAV-based maritime search and rescue under fixed wind speed conditions, this study also explores collaborative target tracking by UAVs under varying wind speed conditions.

View Article and Find Full Text PDF