Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Ischemic heart disease (IHD) presents a significant global health challenge, with myocardial ischemia-reperfusion injury (MIRI) being a major pathophysiological contributor and lacking effective interventions. While aerobic exercise training (AET) enhances cardiovascular health, its protective mechanism in MIRI remains elusive. This study aims to elucidate the protective effect of AET in MIRI and its underlying mechanism.

Methods: A mouse model of AET and MIRI was established to evaluate basic indices, cardiac ultrasound, and myocardial injury markers. Dot Blot, qRT-PCR, and Western blot were employed to assess mA RNA methylation levels and related protein expression in myocardial tissue. In vitro, primary cardiomyocyte culture was utilized to mimic MIRI, evaluating cell viability, mitochondrial membrane potential, etc. Finally, myocardial tissues of MIRI mice were immunoprecipitated for mA RNA methylation and sequenced to analyze related signaling pathways.

Key Results: AET significantly improved cardiac function and mitigated myocardial injury and fibrosis. Moreover, AET protected myocardium from MIRI by reducing mA RNA methylation levels and modulating METTL3 expression. In vitro experiments demonstrated that the decrease in mA RNA methylation levels and METTL3 expression conferred resistance to hypoxia/reoxygenation-induced injury. Furthermore, sequencing results indicated elevated myocardial tissue mA RNA methylation levels during MIRI, activation of the Nrf2-related signaling pathway, and AET-mediated regulation of the Nrf2/HO-1 signaling pathway, thereby attenuating MIRI through modulation of METTL3-related mA methylation.

Conclusion And Significance: AET attenuates MIRI by reducing the level of METTL3-related mA RNA methylation in cardiomyocytes and activating the Nrf2/HO-1 antioxidant signaling pathway. This finding provides a novel insight and strategy for the prevention and treatment of IHD, holding significant clinical implications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2024.123294DOI Listing

Publication Analysis

Top Keywords

rna methylation
24
methylation levels
16
signaling pathway
12
miri
10
aerobic exercise
8
exercise training
8
ischemia-reperfusion injury
8
aet miri
8
myocardial injury
8
myocardial tissue
8

Similar Publications

Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a major complication of diabetes, imposing substantial socioeconomic and public health challenges. N6-methyladenosine (m6A) modification, a prevalent epigenetic mechanism, influences cellular processes and disease progression. Wilms' tumor 1-associating protein (WTAP), an m6A methyltransferase subunit, was investigated for its role in DN.

View Article and Find Full Text PDF

Bladder cancer (BlCa) exhibits a highly heterogeneous molecular landscape and treatment response, underlining the pressing need for personalized prognosis. N6-methyladenosine (m6A) constitutes the most abundant RNA modification, modulates RNA biology/metabolism, and maintains cellular homeostasis, with its dysregulation involved in cancer initiation and progression. Herein, we evaluated the clinical value of METTL3 m6A methyltransferase, the main catalytic component of m6A methylation machinery, in improving BlCa patients' risk stratification and prognosis.

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Aurora kinase A promotes trained immunity via regulation of endogenous S-adenosylmethionine metabolism.

Elife

September 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Innate immune cells can acquire a memory phenotype, termed trained immunity, but the mechanism underlying the regulation of trained immunity remains largely elusive. Here, we demonstrate that inhibition of Aurora kinase A (AurA) dampens trained immunity induced by β-glucan. ATAC-seq and RNA-seq analysis reveal that AurA inhibition restricts chromatin accessibility of genes associated with inflammatory pathways such as JAK-STAT, TNF, and NF-κB pathways.

View Article and Find Full Text PDF