Sulfuric Acid-Driven Nucleation Enhanced by Amines from Ethanol Gasoline Vehicle Emission: Machine Learning Model and Mechanistic Study.

Environ Sci Technol

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The sulfuric acid (SA)-amine nucleation mechanism gained increasing attention due to its important role in atmospheric secondary particle formation. However, the intrinsic enhancing potential (IEP) of various amines remains largely unknown, restraining the assessment on the role of the SA-amines mechanism at various locations. Herein, machine learning (ML) models were constructed for high-throughput prediction of IEP of amines, and the nucleation mechanism of specific amines with high IEP was investigated. The formation free energy (Δ) of SA-amines dimer clusters, a key parameter for assessing IEP, was calculated for 58 amines. Based on the calculated Δ values, seven ML models were constructed and the best one was further utilized to predict the Δ values of the remaining 153 amines. Diethylamine (DEA), mainly emitted from ethanol gasoline vehicles, was found to be one of the amines with the highest IEP for SA-driven nucleation. By studying larger SA-DEA clusters, it was found that the nucleation rate of DEA with SA is 3-7 times higher than that of dimethylamine, a well-known key base for SA-driven nucleation. The study provides a powerful tool for evaluating the actual role of amines on SA-driven nucleation and revealed that the mechanism could be particularly important in areas where ethanol gasoline vehicles are widely used.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.4c06578DOI Listing

Publication Analysis

Top Keywords

ethanol gasoline
12
sa-driven nucleation
12
amines
8
machine learning
8
nucleation mechanism
8
iep amines
8
models constructed
8
gasoline vehicles
8
nucleation
7
iep
5

Similar Publications

A thermostable Cas9-based genome editing system for thermophilic acetogenic bacterium .

Appl Environ Microbiol

September 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.

is a thermophilic acetogenic bacterium capable of thriving at elevated temperatures up to 66°C. It metabolizes carbohydrates such as glucose, mannose, and fructose and can also grow lithotrophically utilizing hydrogen (H) and carbon dioxide (CO) or carbon monoxide (CO), with acetate serving as its main product. A simple and efficient genome editing system for would not only facilitate the understanding of the physiological function of enzymes involved in energy and carbon metabolism but also enable metabolic engineering.

View Article and Find Full Text PDF

Oil Well Stimulation of Dispersion-Penetration Agent and Plugging Removal Technology.

ACS Omega

September 2025

National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China.

Conventional acidizing struggles to remove complex, organic-rich scales in oil wells, and while strong organic solvents can help, their high cost and safety risks limit field use. To overcome these shortcomings, we developed a low-cost, safe permeability-enhanced-dispersion (PD) technique that first loosens and disperses the scale and then applies acid for thorough cleanup. The PD fluid (DL) contains a mutually soluble fatty alcohol amide phosphate dispersant (DL-F), ethanol, a surfactant blend, and a self-generating acid.

View Article and Find Full Text PDF

Controllable synthesis of -hexagonal ZnAl-LDHs nanosheets for high-performance room-temperature ethanol gas sensing.

Dalton Trans

September 2025

School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, 5340 Xiping Road, Beichen District, Tianjin, 300401, China.

Layered double hydroxides (LDHs) have attracted considerable attention in gas sensing applications due to their highly tunable chemical composition and unique two-dimensional layered architecture. In this study, a series of ZnAl-LDHs with varying Zn/Al molar ratios were synthesized a facile hydrothermal method, and their ethanol sensing performance at room temperature was systematically evaluated. The influence of composition on the structural, morphological, and electronic properties of the materials was thoroughly investigated using a suite of characterization techniques, including XRD, FTIR, SEM, TEM, BET, XPS, PL, and EPR.

View Article and Find Full Text PDF

Oral diseases affect more than 3.5 billion people globally, representing a major public health burden, particularly in low- and middle-income countries where access to dental care is often limited. Furthermore, the use of conventional antimicrobial agent may cause side effect.

View Article and Find Full Text PDF

The temperature of the carrier gas will affect the performance of high-field asymmetric ion waveform mobility spectrometry (FAIMS), changing the height and position of the peaks of the FAIMS spectrum. In this study, we explored the influence of temperature on the FAIMS spectrum through experiment and simulation. In the experiment, the PCB self-heating temperature control FAIMS system was used to study the effects of temperature changes on the FAIMS spectra of ethanol, acetic acid, acetone, and ethyl acetate, and the coefficient solving methods of mobility and were derived in detail.

View Article and Find Full Text PDF