98%
921
2 minutes
20
Background: Over the course of evolution, insects have seen drastic changes in their mode of development. While insects with derived modes of development have been studied extensively, information on ancestral modes of development is lacking. To address this, we selected a member of one of the earliest lineages of extant flying insects, serving as an outgroup to the modern winged insects, the short germ, non-model mayfly Ephemera vulgata Linnaeus (Insecta: Ephemeroptera, Ephemeridae). We document the embryonic morphology throughout its development and establish a global temporal expression atlas.
Results: DAPI staining was used to visualise developmental morphology to provide a frame of reference for the sequenced timepoints. A transcriptome was assembled from 3.2 billion Illumina RNAseq reads divided in 12 timepoints with 3 replicates per timepoint consisting of 35,091 putative genes. We identified 6,091 significantly differentially expressed genes (DEGs) and analysed them for broad expression patterns via gene ontology (GO) as well as for specific genes of interest. This revealed a U-shaped relationship between the sum of DEGs and developmental timepoints, over time, with the lowest number of DEGs at 72 hours after egg laying (hAEL). Based on a principal component analysis of sequenced timepoints, overall development could be divided into four stages, with a transcriptional turning point around katatrepsis. Expression patterns of zld and smg showed a persistent negative correlation and revealed the maternal-to-zygotic transition (MZT), occurring 24 hAEL. The onset of development of some major anatomical structures, including the head, body, respiratory system, limb, muscle, and eye, are reported. Finally, we show that the ancestral short germ sequential mode of segmentation translates to a sequential Hox gene activation and find diverging expression patterns for lab and pb. We incorporate these patterns and morphological observations to an overview of the developmental timeline.
Conclusions: With our comprehensive differential expression study, we demonstrate the versatility of our global temporal expression atlas. It has the capacity to contribute significantly to phylogenetic insights in early-diverging insect developmental biology and can be deployed in both molecular and genomic applications for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616370 | PMC |
http://dx.doi.org/10.1186/s12864-024-10934-7 | DOI Listing |
Neurol Neuroimmunol Neuroinflamm
November 2025
Department of Neurology, UC Davis Medical Center, Sacramento, CA.
Objectives: Complement factor I (CFI) deficiency is a rare condition that can present with fulminant relapsing CNS autoinflammation. In this report, we highlight the utility of genetic testing in unexplained CNS autoinflammation.
Methods: This case report describes a young adult with partial CFI deficiency, presenting with acute hemorrhagic leukoencephalitis and longitudinally extensive transverse myelitis.
Mol Biol Rep
September 2025
Phytoveda Pvt. Ltd, Mumbai, 400022, India.
Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.
Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.
Bull Math Biol
September 2025
Department of Mathematics, Siena University, 515 Loudon Road, Loudonville, NY, 12211, USA.
Autonomous differential equation compartmental models hold broad utility in epidemiology and public health. However, these models typically cannot account explicitly for myriad factors that affect the trajectory of infectious diseases, with seasonal variations in host behavior and environmental conditions as noteworthy examples. Fortunately, using non-autonomous differential equation compartmental models can mitigate some of these deficiencies, as the inclusion of time-varying parameters can account for temporally varying factors.
View Article and Find Full Text PDFSynth Biol (Oxf)
August 2025
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States.
Modular cloning systems streamline laboratory workflows by consolidating genetic 'parts' into reusable and modular collections, enabling researchers to fast-track strain construction. The GoldenBraid 2.0 modular cloning system utilizes the cutting property of type IIS restriction enzymes to create defined genetic 'grammars', which facilitate the reuse of standardized genetic parts and assembly of genetic parts in the right order.
View Article and Find Full Text PDFSci China Life Sci
September 2025
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Diurnal floret opening and closure (DFOC) is essential for rice reproductive development and hybrid breeding, yet transcriptional dynamics and underlying regulatory networks remain poorly characterized. Here, we conducted high-temporal-resolution transcriptomic analyses of lodicules to dissect DFOC regulatory networks in two japonica rice cultivars. Analysis of differentially expressed genes (DEGs) uncovered core genes shared by both cultivars, primarily associated with jasmonic acid (JA) signaling and cell wall remodeling.
View Article and Find Full Text PDF