98%
921
2 minutes
20
Pine wilt disease (PWD) is a highly destructive infectious disease that affects pine forests. Therefore, an accurate and effective method to monitor PWD infection is crucial. However, the majority of existing technologies can detect PWD only in the later stages. To curb the spread of PWD, it is imperative to develop an efficient method for early detection. We presented an early stage detection method for PWD utilizing UAV remote sensing, hyperspectral image reconstruction, and SVM classification. Initially, employ UAV to capture RGB remote sensing images of pine forests, followed by labeling infected plants using these images. Hyperspectral reconstruction networks, including HSCNN+, HRNet, MST++, and a self-built DW3D network, were employed to reconstruct the RGB images obtained from remote sensing. This resulted in hyperspectral images in the 400-700nm range, which were used as the dataset of early PWD detection in pine forests. Spectral reflectance curves of infected and uninfected plants were extracted. SVM algorithms with various kernel functions were then employed to detect early pine wilt disease. The results showed that using SVM for early detection of PWD infection based on reconstructed hyperspectral images achieved the highest accuracy, enabling the detection of PWD in its early stage. Among the experiments, MST++, DW3D, HRNet, and HSCNN+ were combined with Poly kernel SVM performed the best in terms of cross-validation accuracy, achieving 0.77, 0.74, 0.71, and 0.70, respectively. Regarding the reconstruction network parameters, the DW3D network had only 0.61M parameters, significantly lower than the MST++ network, which had the highest reconstruction accuracy with 1.6M parameters. The accuracy was improved by 27% compared to the detection results obtained using RGB images. This paper demonstrated that the hyperspectral reconstruction-poly SVM model could effectively detect the Early stage of PWD. In comparison to UAV hyperspectral remote sensing methods, the proposed method in this article offers a same precision, but a higher operational efficiency and cost-effectiveness. It also enables the detection of PWD at an earlier stage compared to RGB remote sensing, yielding more accurate and reliable results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611544 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1453761 | DOI Listing |
Environ Monit Assess
September 2025
Department of Environment and Life Science, KSKV Kachchh University, Bhuj, Gujarat, 370 001, India.
India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Laboratory of Quantum Information, University of Science and Technology of China, 230026, Hefei, China.
Quantum imaging with spatially entangled photons offers advantages such as enhanced spatial resolution, robustness against noise, and counterintuitive phenomena, while a biphoton spatial aberration generally degrades its performance. Biphoton aberration correction has been achieved by using classical beams to detect the aberration source or scanning the correction phase on biphotons if the source is unreachable. Here, a new method named position-correlated biphoton Shack-Hartmann wavefront sensing is introduced, where the phase pattern added on photon pairs with a strong position correlation is reconstructed from their position centroid distribution at the back focal plane of a microlens array.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.
View Article and Find Full Text PDFNat Commun
September 2025
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
Rising atmospheric vapor pressure deficit (VPD)-a measure of atmospheric dryness, defined as the difference between saturated vapor pressure (SVP) and actual vapor pressure (AVP)-has been linked to increasing daily mean near-surface air temperatures since the 1980s. However, it remains unclear whether the faster increases in daily maximum temperature (T) relative to daily minimum temperature (T) have contributed to rising VPD. Here, we show that the faster rise in T compared with T over land has intensified VPD from 1980 to 2023.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Shanxi Normal University, Taiyuan, 030000, PR China.
Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.
View Article and Find Full Text PDF