98%
921
2 minutes
20
A novel nickel-based metal organic framework (MOF) [Ni(FDC)(CHOH)(HO)](HO) (UOW-6) utilizing biomass-derived 2,5-furan dicarboxylate (FDC) as a ligand is reported as an electrocatalyst for anodic ethylene glycol (EG) oxidation with cathodic hydrogen evolution. The MOF structure was analyzed using single crystal X-ray-diffraction, thermogravimetric analysis (TGA) and thermodiffractometry, to establish its structure and verify phase purity. The material was dropcast on carbon fiber paper as a catalyst, and by using a three-electrode system, UOW-6 requires only 1.47 V to attain a current density of 50 mA cm. During oxidation of the EG, UOW-6 shows unprecedented selectivity towards formic acid with a Faradaic efficiency of 94 % and remarkable stability over 20 days. The combination of electrochemical measurements and in situ Raman confirmed in situ formed NiOOH at the surface of UOW-6 as the catalytically active sites for EG oxidation. This work not only presents a pioneering application of FDC-based MOFs for polyethylene terephthalate (PET) upcycling but also underscores the potential of electrocatalysis in advancing sustainable plastic valorization strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997925 | PMC |
http://dx.doi.org/10.1002/cssc.202402319 | DOI Listing |
Chem Commun (Camb)
September 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
The MOF-derived Pd-CeO/NC catalyst exhibited enhanced formic acid electrooxidation activity due to interfacial electronic reconstruction, which downshifted the Pd d-band centre, thereby promoting the indirect oxidation of HCOOH and facilitating CO* oxidation.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Chemical and Veterinary Investigations Office Stuttgart, Schaflandstraße 3/2, 70736, Fellbach, Germany.
Background: Previous studies involving cleanup via conventional solid-phase extraction (SPE) materials to overcome matrix effects for the polar organophosphonate and -phosphinate pesticides glyphosate, glufosinate, ethephon, fosetyl, and their various metabolites often showed limitations due to the existence of various matrix compounds in plant commodities with similar polarity. To overcome existing drawbacks, we utilized the unique selectivity provided by metal oxides as SPE materials. These were exploited in a novel automated online SPE-LC-MS/MS method which allowed analyte-specific trapping in the presence of excessive amounts of matrix compounds as typically contained in extracts of the Quick Polar Pesticides (QuPPe) method.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.; Ordos Laboratory, Inner
Currently, electrocatalytic conversion of carbon dioxide into higher-value compounds is a promising approach. However, developing a stable and efficient catalyst with high selectivity for specific products remains a major challenge. Herein, we constructed a bismuth-based metal-organic framework (Bi-MOF) as a catalyst for the catalytic production of formic acid from carbon dioxide, to which different ratios of tin metal elements were doped.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
Agro-Food Technology and Quality Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Rabat, Morocco. Electronic address:
The composition of the injection solvent is a critical, yet often underestimated, parameter in liquid chromatography-tandem mass spectrometry (LC-MS/MS). This study systematically evaluates the influence of injection solvent on the analysis of 90 pesticides by comparing mixtures of acetonitrile (ACN) with water and buffered mobile phase A (5 mM ammonium formate, 0.1% formic acid) across various ratios (10/90 to 50/50, v/v).
View Article and Find Full Text PDFNano Lett
September 2025
School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China.
The practical application of formic acid for large-scale hydrogen storage is constrained by its low H production rates. Conventional strategies rely on excessive chemical additives to accelerate the initial deprotonation step for efficient dehydrogenation. However, this approach is energy-consuming and compromises the intrinsic hydrogen storage density (53 g L) of formic acid.
View Article and Find Full Text PDF