Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Engineering proteins is a challenging task requiring the exploration of a vast design space. Traditionally, this is achieved using Directed Evolution (DE), which is a laborious process. Generative deep learning, instead, can learn biological features of functional proteins from sequence and structural datasets and return novel variants. However, most models do not generate thermodynamically stable proteins, thus leading to many non-functional variants. Here we propose a model called PRotein Engineering by Variational frEe eNergy approximaTion (PREVENT), which generates stable and functional variants by learning the sequence and thermodynamic landscape of a protein. We evaluate PREVENT by designing 40 variants of the conditionally essential E. coli phosphotransferase N-acetyl-L-glutamate kinase (EcNAGK). We find 85% of the variants to be functional, with 55% of them showing similar growth rate compared to the wildtype enzyme, despite harbouring up to 9 mutations. Our results support a new approach that can significantly accelerate protein engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609274PMC
http://dx.doi.org/10.1038/s41467-024-54814-wDOI Listing

Publication Analysis

Top Keywords

protein engineering
12
engineering variational
8
variational free
8
free energy
8
energy approximation
8
variants
5
protein
4
approximation engineering
4
engineering proteins
4
proteins challenging
4

Similar Publications

Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).

View Article and Find Full Text PDF

African swine fever virus (ASFV) is a large DNA virus that causes a highly lethal disease in pigs and currently has no effective vaccines or antiviral treatments available. We designed a protein switch that combines the DNase domain of colicin E9 (DNase E9) and its inhibitor Im9 with the viral protease cleavage site. The complex is only destroyed in the presence of an ASFV pS273R protease, which releases DNase activity.

View Article and Find Full Text PDF

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Wheat, a significant source of protein, can also induce various wheat-related allergic reactions (WRARs). Statistical data show significant spatiotemporal and geographical variations in the prevalence of WRARs. Studies reveal that hexaploid wheat exhibits notably higher allergenicity.

View Article and Find Full Text PDF

During brewing processes, proteins such as lipid transfer protein 1 (LTP1) are exposed to high temperatures, which later affects the beer foam properties. To develop high-quality beer, it is therefore essential to understand the protein chemical modifications and structural alternations induced by the high temperatures and their impact on beer foam. This study characterizes heat-induced chemical modifications and changes in the molecular size distribution and structure of LTP1 and its lipid-bound isoform, LTP1b, using size-exclusion chromatography and reverse-phase chromatography/mass spectrometry.

View Article and Find Full Text PDF