98%
921
2 minutes
20
Background: Kaempferol (KF), the main active ingredient in identifying the authenticity of safflower, has a variety of pharmacological activities and neuroprotective effects. However, the mechanism of KF in the treatment of epilepsy remains unclear. This study aimed to investigate the protective effects of KF on epilepsy and its related mechanisms.
Methods: Network pharmacology was used to explore the targets and mechanisms of safflower antiepileptic action. The protective effect of KF on epilepsy was assessed in the behavior and tissues of epileptic mice. Additionally, the impact of KF on the excitability and calcium transients of rat cortical neurons and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid receptor (AMPAR) were investigated using patch clamp and calcium imaging techniques.
Results: Network pharmacology indicated safflower could be involved in calcium signaling pathways and calcium channel inhibitor activity. Experimental validation demonstrated that KF delayed seizure onset and mitigated neuronal damage in the prefrontal cortex of mice. It also reduced neuronal excitability, as indicated by action potential parameters, and suppressed Glutamate (Glu)-induced calcium transients. In tsA201 cells, KF inhibited AMPAR-mediated currents, suggesting a role in regulating [Ca] homeostasis.
Conclusion: These results indicate that KF's anticonvulsant properties may arise from its neuroprotection against cell injury, edema, and necrosis, its reduction of neuronal hyperexcitability, and its prevention of calcium-induced cytotoxicity, potentially involving AMPAR modulation. This study positions KF as a promising candidate for epilepsy therapy, offering a scientific foundation for its clinical investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2024.111150 | DOI Listing |
PLoS One
September 2025
Shenzhen University Institute for Advanced Study, Shenzhen, Guangdong, China.
Trichophyton rubrum, a dermatophyte, demonstrates a notable ability to form mature biofilms on skin and associated surfaces, strengthening its resistance to antifungal agents. This characteristic poses intricate challenges in dermatological research and therapeutic strategies, underscoring the need for innovative approaches to effectively manage fungal infections. This work assessed the impact of the anti-biofilm enzymes, i.
View Article and Find Full Text PDFCell Biochem Biophys
September 2025
Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang, Malaysia.
CNS Neurosci Ther
September 2025
The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
Aim: To investigate the effects and mechanisms of S-adenosylmethionine (SAM) from deer antler on improving depression-like behaviors in chronic unpredictable mild stress (CUMS) mice.
Methods: The CUMS method was used to establish a mouse depression model. The relationship between SAM and HIF-1α was analyzed by small molecule-protein docking and molecular dynamics simulation.
RSC Chem Biol
July 2025
Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University Max-von-Laue-Str. 9 D-60438 Frankfurt am Main Germany
Herein we present the rapid development of LH168, a potent and highly selective chemical probe for WDR5, streamlined by utilizing a DEL-ML (DNA encoded library-machine learning) hit as the chemical starting point. LH168 was comprehensively characterized in bioassays and demonstrated potent target engagement at the WIN-site pocket of WDR5, with an EC of approximately 10 nM, a long residence time, and exceptional proteome-wide selectivity for WDR5. In addition, we present the X-ray co-crystal structure and provide insights into the structure-activity relationships (SAR).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2025
Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
Objective: This study aimed to investigate comorbidity patterns and potential pathogenic mechanisms in patients with Hashimoto's thyroiditis (HT).
Methods: Patients with HT who visited the outpatient clinic of the Thyroid Department at Dongzhimen Hospital, Beijing University of Chinese Medicine, between June 2021 and December 2024 were included. Association rule analysis and logistic regression analysis were performed using SPSS 25.