Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Various oncolytic viruses (OVs) have been adopted as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-T cells against solid tumors. However, the therapeutic effect of OVs has been limited by pre-existing neutralizing antibodies and poor targeting delivery for systemic administration. Herein, we propose using bioorthogonal OV nanovesicles to boost the antitumor effects of CAR-T cells in solid tumors by reshaping the tumor microenvironment. Using a cell-membrane nanomimetic technique, we embedded artificial chemical ligands on cancer cell surfaces and then encapsulated lysoviral particles to obtain dual-targeted OV nanovesicles with bioorthogonal targeting and homologous recognition. OVs can be directly encapsulated into cancer cell nanovesicles and exhibit a liposome-like nanostructure, efficient loading, and excellent tumor-targeting capability. Encouragingly, OV nanovesicles efficiently induced tumor-cell apoptosis while sparing normal tissues and cells, thereby inhibiting tumor growth. Administration of viral nanovesicles effectively increased the secretion of anti-tumor cytokines such as IL-2, TNF-α and IFN-γ, and significantly promoted the infiltration and activation of CD8CAR-T cells in tumors. Our data suggest that bioorthogonal OV nanovesicles hold great potential to overcome the limitations of CAR-T cells as monotherapies against solid tumors and, thus, drive the clinical application of combination therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4bm01305kDOI Listing

Publication Analysis

Top Keywords

car-t cells
16
solid tumors
16
cells solid
12
bioorthogonal nanovesicles
8
cancer cell
8
nanovesicles
7
cells
6
tumors
5
bioorthogonal
4
bioorthogonal oncolytic-virus
4

Similar Publications

Pancreatic cancer (PC) is notoriously resistant to both chemotherapy and immunotherapy, presenting a major therapeutic challenge. Epigenetic modifications play a critical role in PC progression, yet their contribution to chemoimmunotherapy resistance remains poorly understood. Here, we identified the transcription factor ZEB1 as a critical driver of chemoimmunotherapy resistance in PC.

View Article and Find Full Text PDF

Despite therapeutic advances, multiple myeloma (MM) remains incurable, especially in relapsed/refractory (R/R) cases. B-cell maturation antigen (BCMA) is a key target for novel immunotherapies, including chimeric antigen receptor T-cell (CAR-T) therapies and bispecific T-cell engagers (BiTEs), which vary in efficacy, toxicity, and accessibility. To compare the efficacy and safety of BCMA-directed CAR-T therapies and BiTEs in R/R MM through a systematic review and meta-analysis.

View Article and Find Full Text PDF

Chimeric antigen receptor T-cell (CAR-T) therapies have demonstrated clinical efficacy in treating haematological malignancies, resulting in multiple regulatory approvals. However, there is a need for robust manufacturing platforms and the use of GMP-aligned reagents to meet the clinical and commercial demands. This study investigates the impact of serum/xeno-free medium (SXFM) and cytokine supplementation on CAR-T cell production in static and agitated culture systems, using 24-well plate G-Rex vessels and 500 mL stirred tank bioreactors (STRs), respectively.

View Article and Find Full Text PDF

Background: Patients with acute myeloid leukemia (AML) are often older, which brings challenges of endurance and persistent efficacy of autologous chimeric antigen receptor (CAR)-T cell therapies. Allogenic CAR-natural killer (NK) cell therapies may offer reduced toxicities and enhanced anti-leukemic potential against AML. CD33 CAR-NK cells have been investigated for AML therapy.

View Article and Find Full Text PDF

Background And Objectives: Neuroimaging findings in immune effector cell-associated neurotoxicity syndrome (ICANS) have not been systematically described. We created the chimeric antigen receptor (CAR) T-cell Neurotoxicity Imaging Virtual Archive Library (CARNIVAL), a centralized imaging database for children and young adults receiving CAR T-cell therapy. Objectives of this study were to (1) characterize neuroimaging findings associated with ICANS and (2) determine whether specific ICANS-related neuroimaging findings are associated with individual neurologic symptoms.

View Article and Find Full Text PDF