98%
921
2 minutes
20
The development of macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource-intensive and provide little control over binding mode. Despite considerable progress in physics-based methods for peptide design and deep-learning methods for protein design, there are currently no robust approaches for design of protein-binding macrocycles. Here, we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic peptide binders against protein targets of interest. We test 20 or fewer designed macrocycles against each of four diverse proteins and obtain medium to high-affinity binders against all selected targets. Designs against MCL1 and MDM2 demonstrate K between 1-10 μM, and the best anti-GABARAP macrocycle binds with a K of 6 nM and a sub-nanomolar IC . For one of the targets, RbtA, we obtain a high-affinity binder with K < 10 nM despite starting from the target sequence alone due to the lack of an experimentally determined target structure. X-ray structures determined for macrocycle-bound MCL1, GABARAP, and RbtA complexes match very closely with the computational design models, with three out of the four structures demonstrating Ca RMSD of less than 1.5 Å to the design models. In contrast to library screening approaches for which determining binding mode can be a major bottleneck, the binding modes of RFpeptides-generated macrocycles are known by design, which should greatly facilitate downstream optimization. RFpeptides thus provides a powerful framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601608 | PMC |
http://dx.doi.org/10.1101/2024.11.18.622547 | DOI Listing |
J Agric Food Chem
September 2025
School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China.
The emergence of severe resistance issues in plant pathogenic fungi poses a significant threat to the global quality and safety of crops. In this study, 36 novel derivatives featuring a 5,6,7,8-tetrahydroquinazolin structure were designed and synthesized for the first time. These 36 target compounds were subjected to tests against five fungal species.
View Article and Find Full Text PDFRSC Adv
September 2025
Departament de Química, Universitat Autònoma de Barcelona Bellaterra 08193 Barcelona Spain
Mammalian ALOX15 are allosteric enzymes but the mechanism of allosteric regulation remains a matter of discussion. Octyl (-(5-(1-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamate inhibits the linoleate oxygenase activity of ALOX15 at nanomolar concentrations, but oxygenation of arachidonic acid is hardly affected. The mechanism of substrate selective inhibition suggests inter-monomer communication within the allosteric ALOX15 dimer complex, in which the inhibitor binding to monomer A induces conformational alterations in the structure of the active site of monomer B.
View Article and Find Full Text PDFBiochem Pharmacol
September 2025
Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, 310015 Hangzhou, China. Electronic address:
Methicillin-resistant Staphylococcus aureus (MRSA) is a highly virulent and drug-resistant pathogen frequently causing bacterial pneumonia. Currently, there are limited effective treatments available due to the rapidly evolving resistance of bacteria. Therefore, there is an urgent need to develop novel therapies that focus on host-pathogen interactions.
View Article and Find Full Text PDFElectromagn Biol Med
September 2025
Laboratory of Biophysics of Sub-Cellular Structures, Scientific-Research Institute of Biology, Chair of Biophysics, Faculty of Biology, Yerevan State University, Yerevan, Armenia.
Effect of millimeter range electromagnetic waves (MM EMW) with the frequency 51.8 GHz on the interaction of DNA-specific ligands-intercalators acridine orange (AO) and methylene blue (MB) with bovine serum albumin (BSA) has been studied. The measurements were implemented by the spectroscopic methods that open new opportunities for such goals.
View Article and Find Full Text PDFJ Med Chem
September 2025
State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
Three generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs) have shown clinical efficacy in nonsmall cell lung cancer (NSCLC), but acquired resistance mutations─especially the -EGFR─remain a major challenge. Here, we report the identification of a series of pyrrolo[2,3-]pyrimidine derivatives that inhibit C797S-mediated EGFR triple mutants. Among them, compound shows subnanomolar IC values against Ba/F3 EGFR and Ba/F3 EGFR, while sparing wild-type EGFR.
View Article and Find Full Text PDF