Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stresses within the tumour microenvironment can mediate post-translational modifications of self-proteins. Homocitrullination is the conversion of lysine to homocitrulline which generates neoepitopes and bypasses self-tolerance. In this study a vaccine targeting homocitrullinated antigens was assessed for stimulation of anti-tumour immunity. Peptides that bind HLA are often hydrophobic which can complicate large scale manufacture and solubility. Here we demonstrate the self-assembling nanoparticle technology (SNAPvax) to co-deliver four homocitrullinated peptides and adjuvant in nanoparticles of a precise size and composition as a vaccine ("Modi-2") that is optimized for manufacturing ease and T cell induction. Strong T cell responses and anti-tumour immunity in mouse tumour models was stimulated against against B16 melanoma (p = 0.0113), CT26 colorectal cancer (p < 0.0001) and 4T1 breast cancer (p = 0.0090). We demonstrate that human lung, colorectal, breast and prostate tumours express the Modi-2 target antigens and propose the Modi-2 vaccine has potential for translation into clinic in several cancer indications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603156PMC
http://dx.doi.org/10.1038/s41541-024-01029-1DOI Listing

Publication Analysis

Top Keywords

anti-tumour immunity
8
modi-2 vaccine
4
vaccine stimulating
4
stimulating cd4
4
cd4 responses
4
responses homocitrullinated
4
homocitrullinated epitopes
4
epitopes therapy
4
therapy solid
4
solid cancers
4

Similar Publications

Nuclear glycine decarboxylase suppresses STAT1-dependent MHC-I and promotes cancer immune evasion.

EMBO J

September 2025

Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences; Wuhan University, Wuhan, 430071, China.

Inadequate antigen presentation by MHC-I in tumor microenvironment (TME) is a common immune escape mechanism. Here, we show that glycine decarboxylase (GLDC), a key enzyme in glycine metabolism, functions as an inhibitor of MHC-I expression in EGFR-activated tumor cells to induce immune escape by a mechanism independent of its enzymatic activity. Upon EGFR activation, GLDC is phosphorylated by SRC and subsequently translocated to the nucleus in human NSCLC cells.

View Article and Find Full Text PDF

Anti-tumor necrosis factor (TNF) therapy for inflammatory bowel disease (IBD) is hampered by issues of nonresponse and resistance, highlighting the urgent need for alternative or complementary treatments. Our study revealed significant upregulation of taurine in the intestinal tissues of IBD patients, which was inversely related to the severity of the disease. A key discovery was that TNF directly induced taurine synthesis in intestinal epithelial cells and increased the production of angiogenin, a nuclease that degrades mitochondrial RNA, which is known to amplify inflammatory responses.

View Article and Find Full Text PDF

Novel role of MKRN2 in regulating tumor growth through host microenvironment and macrophage M1 to M2 switch.

Cancer Lett

September 2025

State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, Department of Radiology, Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou,

The tumor microenvironment (TME) plays a pivotal role in cancer progression, though the molecular regulators governing its immunosuppressive properties remain incompletely characterized. In this study, we identify Makorin-2 (MKRN2) as a novel modulator of TME remodeling through integrated analyses of genetically engineered mouse models and human clinical data. Utilizing MKRN2 knockout mice, we observed significantly accelerated tumor growth compared to wild-type control, which was associated with profound alterations in immune cell composition, especially M2 macrophages.

View Article and Find Full Text PDF

Modified hyaluronic acid (HA) biomaterials have received considerable attention in recent years, especially in developing innovative therapeutic strategies for targeted disease interventions. HA serves to shield therapeutics from the physiological environment, while enabling safe delivery and promoting uptake into specific cells. As a hydrophilic chain polymer, HA is readily chemically modified into functional biomaterials for drug delivery and cancer immunotherapy.

View Article and Find Full Text PDF

Modulation of fibronectin extracellular matrix enhances anti-tumor efficacy of immune checkpoint blockade.

Cell Rep Med

September 2025

Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. Electronic address:

The success of immune checkpoint inhibitors is limited by multiple factors, including poor T cell infiltration and function within tumors, partly due to a dense extracellular matrix (ECM). Here, we investigate modulating the ECM by targeting integrin α5β1, a major fibronectin-binding and organizing integrin, to improve immunotherapy outcomes. Use of a function-blocking murinized α5β1 antibody reduces fibronectin fibril formation, enhances CD8 T cell transendothelial migration, increases vascular permeability, and decreases vessel-associated collagen.

View Article and Find Full Text PDF