Deep learning-assisted single-atom detection of copper ions by combining click chemistry and fast scan voltammetry.

Nat Commun

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell ion channels, cell proliferation and metastasis, and many other life activities are inseparable from the regulation of trace or even single copper ion (Cu and/or Cu). In this work, an electrochemical sensor for sensitive quantitative detection of 0.4-4 amol L copper ions is developed by adopting: (1) copper ions catalyzing the click-chemistry reaction to capture numerous signal units; (2) special adsorption assembly method of signal units to ensure signal generation efficiency; and (3) fast scan voltammetry at 400 V s to enhance signal intensity. And then, the single-atom detection of copper ions is realized by constructing a multi-layer deep convolutional neural network model FSVNet to extract hidden features and signal information of fast scan voltammograms for 0.2 amol L of copper ions. Here, we show a multiple signal amplification strategy based on functionalized nanomaterials and fast scan voltammetry, together with a deep learning method, which realizes the sensitive detection and even single-atom detection of copper ions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603177PMC
http://dx.doi.org/10.1038/s41467-024-54743-8DOI Listing

Publication Analysis

Top Keywords

copper ions
24
fast scan
16
single-atom detection
12
detection copper
12
scan voltammetry
12
amol copper
8
signal units
8
copper
7
ions
6
signal
6

Similar Publications

An electrochemical biosensor for detection of copper(II) based on FeO@Au magnetic nanoparticles and Cu-dependent DNAzyme assisted nicking endonuclease signal amplification.

Analyst

September 2025

Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.

Copper ions are essential elements in the human body and participate in various physiological activities in the bodies of organisms. Herein, an ultrasensitive electrochemical biosensor was developed for detection of copper ions (Cu) based on FeO@Au magnetic nanoparticles (FeO@Au MNPs) and a Cu-dependent DNAzyme assisted nicking endonuclease signal amplification (NESA) strategy. dsDNA is formed by a hybridization reaction between DNA S2 and S1 immobilized on the surface of FeO@Au MNPs.

View Article and Find Full Text PDF

Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.

View Article and Find Full Text PDF

Background: Recent advancements in cancer therapeutics have catalyzed the development of noninvasive treatment modalities, including the utilization of fluorescent chemotherapeutic agents. These agents offer dual functionality, enabling targeted drug delivery, real-time tumor imaging, and personalized therapy monitoring. Such capabilities are instrumental in the progression toward more precise and effective cancer interventions.

View Article and Find Full Text PDF

Small-molecule metabolic chemical probes are tailored chemical biology tools that are designed to detect and visualize biological processes within a cell or an organism. Nucleoside analogues are a subset of metabolic probes that enable the study of DNA synthesis, proliferation kinetics, and cell cycle progression. However, most available nucleoside analogue probes have been designed for use in mammalian cells, limiting their use in other species, where there are metabolic pathway differences.

View Article and Find Full Text PDF

Nowadays, the continuous advancement of sodium-ion battery technology has made it an important choice in the new energy field and promoted the development of lithium-ion batteries. The cycling stability of cathode materials for sodium-ion batteries at high voltage (>4.0 V) is still a key challenge.

View Article and Find Full Text PDF