98%
921
2 minutes
20
In this paper, we provide an overview and analysis of the BRAIN Initiative data-sharing ecosystem. First, we compare and contrast the characteristics of the seven BRAIN Initiative data archives germane to data sharing and reuse, namely data submission and access procedures and aspects of interoperability. Second, we discuss challenges, benefits, and future opportunities, focusing on issues largely specific to sharing human data and drawing on = 34 interviews with diverse stakeholders. The BRAIN Initiative-funded archive ecosystem faces interoperability and data stewardship challenges, such as achieving and maintaining interoperability of data and archives and harmonizing research participants' informed consents for tiers of access for human data across multiple archives. Yet, a benefit of this distributed archive ecosystem is the ability of more specialized archives to adapt to the needs of particular research communities. Finally, the multiple archives offer ample raw material for network evolution in response to the needs of neuroscientists over time. Our first objective in this paper is to provide a guide to the BRAIN Initiative data-sharing ecosystem for readers interested in sharing and reusing neuroscience data. Second, our analysis supports the development of empirically informed policy and practice aimed at making neuroscience data more findable, accessible, interoperable, and reusable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602185 | PMC |
http://dx.doi.org/10.7554/eLife.94000 | DOI Listing |
Brain
September 2025
Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
Animal models of the pathology of Parkinson's disease (PD) have provided most of the treatments to date, but the disease is restricted to human patients. In vitro models using human pluripotent stem cells (hPSCs)-derived neural organoids have provided improved access to study PD etiology. This study established a method to generate human striatal-midbrain assembloids (hSMAs) from hPSCs for modeling alpha-synuclein (α-syn) propagation and recapitulating basal ganglia circuits, including nigrostriatal and striatonigral pathways.
View Article and Find Full Text PDFAI Neurosci
June 2025
Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Background: This study introduces instantaneous frequency (IF) analysis as a novel method for characterizing dynamic brain causal networks from functional magnetic resonance imaging blood-oxygen-level-dependent signals.
Methods: Effective connectivity, estimated using dynamic causal modeling, is analyzed to derive IF sequences, with the average IF across brain regions serving as a potential biomarker for global network oscillatory behavior.
Results: Analysis of data from the Alzheimer's Disease (AD) Neuroimaging Initiative, Open Access Series of Imaging Studies, and Human Connectome Project demonstrates the method's efficacy in distinguishing between clinical and demographic groups, such as cognitive decline stages (e.
NPJ Dement
September 2025
C2N Diagnostics, LLC, St. Louis, MO USA.
The diagnostic performance of the Amyloid Probability Score 2 (APS2; the algorithmic result of the PrecivityAD2™ blood test) was originally trained and validated in two cohorts of cognitively impaired (CI) individuals and is in clinical use. Here, we further test the repeatability and reliability of the prespecified APS2 algorithm and cut point in an independent cohort. APS2 diagnostic performance was determined using amyloid positron emission tomography (PET) as the reference standard.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight In
The dorsal striatum plays a critical role in action selection, movement, and sensorimotor learning. While action-specific striatal ensembles have been described, the mechanisms underlying their formation and evolution during motor learning remain poorly understood. Here, we employed longitudinal two-photon Ca imaging of dorsal striatal neurons in head-fixed mice as they learned to self-initiate locomotion.
View Article and Find Full Text PDFNat Aging
September 2025
IFOM-ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
Aging is the main risk factor for Parkinson's disease (PD), yet our understanding of how age-related mechanisms contribute to PD pathophysiology remains limited. We conducted a longitudinal analysis of blood samples from the Parkinson's Progression Markers Initiative cohort to investigate DNA damage in PD. Patients with PD exhibited disrupted DNA repair pathways and biased suppression of longer transcripts, indicating age-related, transcription-stalling DNA damage.
View Article and Find Full Text PDF