98%
921
2 minutes
20
DC converter stations have a high voltage level, a long transmission distance, and complex internal equipment, and contain power electronic devices, which seriously endanger the stable operation of the system itself and the active distribution network at the receiving end when faults occur. Accurate fault analysis and diagnosis are critical to the safe and stable operation of power systems. Traditional fault diagnosis methods often rely on a single source of information, leading to issues such as insufficient information utilization and incomplete diagnostic scope when applied to DC transmission systems. To address these problems, a fault diagnosis method for converter stations based on preliminary identification of the fault range and the fusion of evidence information of the switch signal and electrical quantity is proposed. First, the preprocessing of converter station sequential event recording (SER) events and a statistical analysis of event characteristics are completed to initially determine the range of the fault.Then, a fuzzy Petri net model and a BP neural network model are constructed on the basis of the fault data from a real-time digital simulation system (RTDS), and the corresponding evidence information of the switch signal and electrical quantity are obtained via iterative inference and deep learning methods. Finally, on the basis of D-S evidence theory, a comprehensive diagnosis result is obtained by fusing the switch and electric evidence information. Taking the fault data of a DC converter station as an example, the proposed method is analyzed and compared with the traditional method, which is based on single information. The results show that the proposed method can reliably and accurately identify fault points in the protected area of the converter station.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11598386 | PMC |
http://dx.doi.org/10.3390/s24227321 | DOI Listing |
PLoS One
September 2025
Department of Maths and Computer Science, Faculty of Science, University of Kinshasa, Kinshasa, The Democratic Republic of the Congo.
Reliable and timely fault diagnosis is critical for the safe and efficient operation of industrial systems. However, conventional diagnostic methods often struggle to handle uncertainties, vague data, and interdependent multi-criteria parameters, which can lead to incomplete or inaccurate results. Existing techniques are limited in their ability to manage hierarchical decision structures and overlapping information under real-world conditions.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2025
Class incremental learning (CIL) offers a promising framework for continuous fault diagnosis (CFD), allowing networks to accumulate knowledge from streaming industrial data and recognize new fault classes. However, current CIL methods assume a balanced data stream, which does not align with the long-tail distribution of fault classes in real industrial scenarios. To fill this gap, this article investigates the impact of long-tail bias in the data stream on the CIL training process through the experimental analysis.
View Article and Find Full Text PDFISA Trans
August 2025
School of Automation, Shenyang Aerospace University, Shenyang, Liaoning Province 110136, China. Electronic address:
When a failure occurs in bearings, vibration signals are characterized by strong non-stationarity and nonlinearity. Therefore, it is difficult to sufficiently dig fault features. 1D local binary pattern (1D-LBP) has the advantageous feature to effectively extract local information of signals.
View Article and Find Full Text PDFPLoS One
September 2025
School of Mechanical and Electrical Engineering, ningde normal university, Ningde City, Fujian Province, China.
As a crucial component in rotating machinery, bearings are prone to varying degrees of damage in practical application scenarios. Therefore, studying the fault diagnosis of bearings is of great significance. This article proposes the Kepler algorithm to optimize the weights of neural networks and improve the diagnostic accuracy of the model.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Electrical Engineering and Mechatronics, Faculty of Engineering, University of Debrecen, Debrecen, Hungary.
Breast cancer is highlighted in recent research as one of the most prevalent types of cancer. Timely identification is essential for enhancing patient results and decreasing fatality rates. Utilizing computer-assisted detection and diagnosis early on may greatly improve the chances of recovery by accurately predicting outcomes and developing suitable treatment plans.
View Article and Find Full Text PDF