98%
921
2 minutes
20
Objective: This study aimed to explore whether excessive HIF2α can amplify the impact of human Umbilical Cord Mesenchymal Stem Cell-derived Extracellular Vesicles (hUC-MSC- EVs) on endothelial cells.
Methods: In this study, we created HIF2α-overexpressing hUC-MSC-EVs and compared their pro-angiogenic effects with control EVs on Human Umbilical Vein Endothelial Cells (HUVECs). MTT assay and Edu staining were used to detect the viability and proliferation ability of HUVECs, and Transwell and Tube Formation Assays were used to detect cell migration and tube formation ability. qPCR assay was used to detect the expression of cellular angiogenic markers. Subsequently, miRNAs that might be regulated by HIF2α were predicted by bioinformatics analysis, and qPCR was used to detect the relative expression of miRNAs in HUVECs treated with hUC-MSC- EV, which over-expresses HIF2α. Subsequently, miR-146a inhibitors were used to investigate the role of miR-146a in mediating the pro-angiogenic effect of HIF2α on HUVECs by detecting cell viability, proliferation, migration, tube-forming ability, and expression of angiogenic markers. Finally, AKT/ERK phosphorylation and Spred1 expression were detected using Western blotting.
Results: Our findings have indicated that overexpression of HIF2α significantly enhances the ability of hUC-MSC-EVs to stimulate proliferation, migration, and tube formation in HUVECs, as demonstrated by MTT/Edu staining, Transwell assay, and tube formation assay results, respectively. Mechanistically, excessive HIF2α has been found to induce the expression of miR-146a in HUVECs and the overexpression of a miR-146a inhibitor to negate the influence of excessive HIF2α on hUC-MSC-EV-induced activity in HUVECs.
Conclusion: The overexpression of HIF2α is an effective strategy for enhancing the pro-angiogenic function of hUC-MSC-EVs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0109298665347753241028072130 | DOI Listing |
Exp Eye Res
September 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China. Electronic address:
Purpose: A disintegrin-like and metalloprotease with thrombospondin type 1 motif 13 (ADAMTS13) has been found to increase and to be associated with diabetic retinopathy (DR). The study aimed to identify the role of ADAMTS13 in the pathogenesis of angiogenesis in DR.
Methods: ADAMTS13 expression was evaluated in human retinal microvascular endothelial cells (HRMVECs), vitreous sample from patients with proliferative DR and diabetic mice model using western blot, real time-quantitative PCR, immunofluorescence and ELISA.
Stem Cell Reports
September 2025
Child Study Center, Yale University, New Haven, CT 06520, USA; Program in Neurodevelopment and Regeneration, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA. Electronic
A complex assortment of neuronal cells contributes to distinct functional circuits in the human brain. Such diversity is imposed upon pluripotent stem cells by a patterning process that begins much before the start of neurogenesis. Neural tube patterning relies on morphogens-diffusible signals that regulate transcription factor networks in progenitor cells, guiding spatial and temporal identity formation.
View Article and Find Full Text PDFChilds Nerv Syst
September 2025
Department of Orthopedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Objective: To analyze the filum terminale (FT) of children with tethered cord syndrome (TCS) and aborted fetuses without neurological disorders in order to investigate the expression of significantly differentially expressed proteins in the FT under both pathological and physiological conditions.
Methods: According to the inclusion and exclusion criteria, 35 FT samples were selected, and the samples were subjected to immunohistochemistry and H&E staining. The data were analyzed using one-way analysis of variance, and P < 0.
Wound Repair Regen
September 2025
Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
This study aimed to develop an acellular dermal matrix derived from tilapia skin and evaluate its potential as a bioscaffold for skin wound repair. Structural and compositional changes before and after decellularisation were assessed through histological staining, electron microscopy and immunological analysis. The matrix exhibited low immunogenicity, preserved extracellular matrix architecture and retained key bioactive components.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.
View Article and Find Full Text PDF