98%
921
2 minutes
20
Peptide-based hydrogel, the polymer materials with a special network structure, are widely used in various fields of biomedicine due to their stable properties and biocompatibility. Environment-responsive self-assembled peptide aqueous solutions can respond to environment changes by the self-assembly of peptides into nanofiber networks. Peptide-based hydrogels well simulate the extracellular matrix and cell growth microenvironment, being suitable for 3D cell culture and organoid culture. To establish a tumor organoid culture system with peptide-based hydrogels, we cultured Panc-1, U87, and H358 cells in a 3D spherical manner using CulX Ⅱ peptide-based hydrogels in 24-well plates for 15 days. The organoids showed a 3D spherical shape, and their sizes increased with the extension of the culture time, with a final diameter ranging from 150 to 300 μm. The organoids had a large number, varying sizes, good cell viability, clear edges, and a good shape, which indicated successful organoid construction. The tumor organoid culture system established in this study with CulX Ⅱ peptide-based hydrogels provides a model for studying tumor pathogenesis, drug development, and tumor suppression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13345/j.cjb.240135 | DOI Listing |
Stem Cell Rev Rep
September 2025
Department of Medical Genetics and Prenatal Diagnostics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.
View Article and Find Full Text PDFCurr Biol
September 2025
Institut Curie, PSL Research University, CNRS UMR 144, 75005 Paris, France.
Epithelia are specialized and selective tissue barriers that separate the organism's interior from the external environment. Among adult tissues, the gut epithelium must withstand microbial and biochemical insults but also mechanical stresses imposed by luminal contents and gastrointestinal motility. In addition, the continuous renewal of the intestinal epithelium creates tension that must be withstood by cell-cell junctions and the actomyosin cytoskeleton to preserve barrier integrity.
View Article and Find Full Text PDFStem Cell Reports
September 2025
Regenerative Neurophysiology, Lund Stem Cell Centre, MultiPark Strategic Area in Neuroscience, Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden. Electronic address:
Cortical interneuron deficiencies, particularly involving the somatostatin (SST) subtypes, contribute to neurological and neuropsychiatric disorders. These interneurons are difficult to derive in vitro from human embryonic stem cells (hESCs) due to their late embryonic development and dependence on glial interaction. To this end, we developed a three-dimensional co-culture model of hESC-derived neurons, enabling long-term development, functional maturity, and neuron-glial interaction.
View Article and Find Full Text PDFSci Transl Med
September 2025
Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are essential for the formation of myelin sheaths and pivotal for maintaining axonal integrity and conduction. Disruption of these cells and the myelin sheaths they produce is a hallmark of demyelinating conditions like multiple sclerosis or those resulting from certain drug side effects, leading to profound neurological impairments. In this study, we created a human brain organoid comprising neurons, astrocytes, and myelinating oligodendrocytes.
View Article and Find Full Text PDFMater Today Bio
October 2025
Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.
Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.
View Article and Find Full Text PDF