Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of artificial intelligence (AI) holds great promise for radiation oncology, with many applications being reported in the literature, including some of which are already in clinical use. These are mainly in areas where AI provides benefits in efficiency (such as automatic segmentation and treatment planning). Prediction models that directly impact patient decision-making are far less mature in terms of their application in clinical practice. Part of the limited clinical uptake of these models may be explained by the need for broader knowledge, among practising clinicians within the medical community, about the processes of AI development. This lack of understanding could lead to low commitment to AI research, widespread scepticism, and low levels of trust. This attitude towards AI may be further negatively impacted by the perception that deep learning is a "black box" with inherently low transparency. Thus, there is an unmet need to train current and future clinicians in the development and application of AI in medicine. Improving clinicians' AI-related knowledge and skills is necessary to enhance multidisciplinary collaboration between data scientists and physicians, that is, involving a clinician in the loop during AI development. Increased knowledge may also positively affect the acceptance and trust of AI. This paper describes the necessary steps involved in AI research and development, and thus identifies the possibilities, limitations, challenges, and opportunities, as seen from the perspective of a practising radiation oncologist. It offers the clinician with limited knowledge and experience in AI valuable tools to evaluate research papers related to an AI model application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585305PMC
http://dx.doi.org/10.1093/bjro/tzae039DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
radiation oncology
8
intelligence radiation
4
oncology practical
4
practical guide
4
guide clinician
4
clinician concepts
4
concepts methods
4
methods artificial
4
intelligence holds
4

Similar Publications

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.

View Article and Find Full Text PDF

Artificial intelligence (AI) is transforming many fields, including healthcare and medicine. In biomarker discovery, AI algorithms have had a profound impact, thanks to their ability to derive insights from complex high-dimensional datasets and integrate multi-modal datatypes (such as omics, electronic health records, imaging or sensor and wearable data). However, despite the proliferation of AI-powered biomarkers, significant hurdles still remain in translating them to the clinic and driving adoption, including lack of population diversity, difficulties accessing harmonised data, costly and time-consuming clinical studies, evolving AI regulatory frameworks and absence of scalable diagnostic infrastructure.

View Article and Find Full Text PDF

Purpose: To evaluate inter-grader variability in posterior vitreous detachment (PVD) classification in patients with epiretinal membrane (ERM) and macular hole (MH) on spectral-domain optical coherence tomography (SD-OCT) and identify challenges in defining a reliable ground truth for artificial intelligence (AI)-based tools.

Methods: A total of 437 horizontal SD-OCT B-scans were retrospectively selected and independently annotated by six experienced ophthalmologists adopting four categories: 'full PVD', 'partial PVD', 'no PVD', and 'ungradable'. Inter-grader agreement was assessed using pairwise Cohen's kappa scores.

View Article and Find Full Text PDF

[Ai's use in health care and informed consent].

Cuad Bioet

September 2025

Universidad de A Coruña. Facultad de Derecho, Campus de Elviña, s/n, 15071, A Coruña. 981 167000 ext. 1640

The implications of the use of artificial intelligence (AI) in many areas of human existence compels us to reflect on its ethical relevance. This paper addresses the signification of its use in healthcare for patient informed consent. To this end, it first proposes an understanding of AI, as well as the basis for informed consent.

View Article and Find Full Text PDF