Pulmonary Xe MRI: CNN Registration and Segmentation to Generate Ventilation Defect Percent with Multi-center Validation.

Acad Radiol

Robarts Research Institute, Western University, London, Canada; School of Biomedical Engineering, Western University, London, Canada; Department of Medical Biophysics, Western University, London, Canada; Division of Respirology, Department of Medicine, Western University, London, Canada. Electronic

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale And Objectives: Hyperpolarized Xe MRI quantifies ventilation-defect-percent (VDP), the ratio of Xe signal-void to the anatomic H MRI thoracic-cavity-volume. VDP is associated with airway inflammation and disease control and serves as a treatable trait in therapy studies. Semi-automated VDP pipelines require time-intensive observer interactions. Current convolutional neural network (CNN) approaches for quantifying VDP lack external validation, which limits multicenter utilization. Our objective was to develop an automated and externally validated deep-learning pipeline to quantify pulmonary Xe MRI VDP.

Materials And Methods: H and Xe MRI data from the primary site (Site1) were used to train and test a CNN segmentation and registration pipeline, while two independent sites (Site2 and Site3) provided external validation. Semi-automated and CNN-based registration error was measured using mean-absolute-error (MAE) while segmentation error was measured using generalized-Dice-similarity coefficient (gDSC). CNN and semi-automated VDP were compared using linear regression and Bland-Altman analysis.

Results: Training/testing used data from 205 participants (healthy volunteers, asthma, COPD, long-COVID; mean age=54 ± 16y; 119 females) from Site1. External validation used data from 71 participants. CNN and semi-automated H and Xe registrations agreed (MAE=0.3°, R =0.95 rotation; 1.1%, R =0.79 scaling; 0.2/0.5px, R =0.96/0.95, x/y-translation; all p < .001). Thoracic-cavity and ventilation segmentations were also spatially corresponding (gDSC=0.92 and 0.88, respectively). CNN VDP correlated with semi-automated VDP (Site1 R/ρ = .97/.95, bias=-0.5%; Site2 R/ρ = .85/.93, bias=-0.9%; Site3 R/ρ = .95/.89, bias=-0.8%, all p < .001).

Conclusion: An externally validated CNN registration/segmentation model demonstrated strong agreement with low error compared to the semi-automated method. CNN and semi-automated registrations, thoracic-cavity-volume and ventilation-volume segmentations were highly correlated with high gDSC for the datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2024.10.029DOI Listing

Publication Analysis

Top Keywords

external validation
12
pulmonary mri
8
semi-automated vdp
8
error measured
8
cnn semi-automated
8
cnn
5
vdp
5
mri cnn
4
cnn registration
4
registration segmentation
4

Similar Publications

The Grams model, designed to predict adverse event risks in advanced chronic kidney disease (CKD) patients, was evaluated in a Chinese cohort of 1,333 patients with eGFR below 30 mL/min/1.73 m. The model demonstrated moderate to good discrimination across outcomes, performing well in predicting kidney replacement therapy (KRT) but overestimating the risks of cardiovascular disease (CVD) and mortality.

View Article and Find Full Text PDF

Purpose: Amino acid PET with [F]-fluoroethylthyrosine ([F]FET-PET) is frequently utilized in gliomas. Most studies on prognostication based on amino acid PET comprise mixed cohorts of brain tumors with low- and high-grade features. The objective of this study was to assess the potential prognostic value of [F]FET-PET-based markers in the group of grade 2 adult-type diffuse gliomas, as defined by the WHO CNS 2021 classification.

View Article and Find Full Text PDF

Machine Learning-Aided Screening and Design Rule Discovery for LWIR-Transparent Optical Materials.

J Chem Inf Model

September 2025

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.

The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.

View Article and Find Full Text PDF

For space missions such as extraterrestrial sample collection, robotic rover exploration, and astronaut landings, the complex terrain and diverse gravitational environments make ground-based micro-low-gravity experimental systems essential for testing and validating spacecraft performance as well as supporting astronaut training. The suspended gravity unloading (SGO) system is a key device commonly used to simulate micro-low-gravity environments. However, the SGO system faces challenges due to model uncertainty and external disturbances, which limit improvements in control accuracy.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF