98%
921
2 minutes
20
Critical-sized orbital bone defects can lead to significant maxillofacial deformities and even eye movement disorders. The challenges associated with these defects, including their complicated structure, inadequate blood supply, and limited availability of progenitor cells that hinder successful repair. To overcome these issues, we developed a novel approach using computer numerical control (CNC) material reduction manufacturing technology to produce a customized polyetheretherketone (PEEK) scaffold that conforms to the specific shape of orbital bone defects. Deferoxamine (DFO) was in situ encapsulated into polydopamine-hybridized zeolitic imidazolate framework-8 (pZIF8-DFO) nanoparticles, which was subsequently adhered to the sulfonated PEEK (sPEEK) scaffold through polydopamine modification. This functionalization enhanced drug loading efficiency and imparted anti-inflammatory properties to the nanoparticle system. Our in vitro findings demonstrated that the sustained release of DFO from the sPEEK/pZIF8-DFO scaffolds extended over 14 days and significantly promoted angiogenesis and progenitor cell recruitment, as evidenced by increased expression of HIF-1α, VEGF, and SDF-1α expression in human umbilical vein endothelial cells (HUVECs). Moreover, sPEEK/pZIF8-DFO scaffolds exhibited superior immunomodulation and osteogenic differentiation capabilities on Raw 264.7 cells and rabbit bone marrow mesenchymal stem cells (rBMSCs), respectively. Most notably, our in vivo rabbit orbital bone defects revealed that sPEEK/pZIF8-DFO scaffolds resulted in a greater volume of new bone formation than on sPEEK and sPEEK/pZIF8 scaffolds, with partial bone connection to the sPEEK/pZIF8-DFO scaffolds. In summary, we develop a novel PEEK scaffold that combines enhanced angiogenesis, stem cell recruitment, immunomodulation, and osteogenic differentiation, showcasing its promising potential for orbital bone reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.137968 | DOI Listing |
J Craniomaxillofac Surg
September 2025
Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Amsterdam, University of Amsterdam, the Netherlands.
Background: Preformed osteosynthesis plates are a novel treatment option for the fixation of zygomaticomaxillary complex (ZMC) fractures. A preformed plate may improve the reduction accuracy, as an accurate fit and sufficient fixation possibilities are provided.
Purpose: This study aimed to evaluate the virtual fitting accuracy of preformed anatomical osteosynthesis zygoma plates and to assess whether their shape and size are adequate for ZMC fracture treatment.
Cell Stem Cell
September 2025
Sanford Stem Cell Institute Integrated Space Stem Cell Orbital Research (ISSCOR) Center, Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA. Electronic address:
Human hematopoietic stem and progenitor cell (HSPC) fitness declines following exposure to stressors that reduce survival, dormancy, telomere maintenance, and self-renewal, thereby accelerating aging. While previous National Aeronautics and Space Administration (NASA) research revealed immune dysfunction in low-earth orbit (LEO), the impact of spaceflight on human HSPC aging had not been studied. To study HSPC aging, our NASA-supported Integrated Space Stem Cell Orbital Research (ISSCOR) team developed bone marrow niche nanobioreactors with lentiviral bicistronic fluorescent, ubiquitination-based cell-cycle indicator (FUCCI2BL) reporter for real-time HSPC tracking in artificial intelligence (AI)-driven CubeLabs.
View Article and Find Full Text PDFCell Rep
September 2025
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
Hematopoietic multipotent progenitors (MPPs) regulate blood cell production to meet the evolving demands of an organism. Adult human MPPs remain ill defined, whereas mouse MPPs are well characterized, with distinct immunophenotypes and lineage potencies. Using multi-omic single-cell analyses and functional assays, we identified distinct human MPPs within Lin-CD34+CD38dim/lo adult bone marrow with unique biomolecular and functional properties.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.
Mixed reality (MR) enables real-time overlay of virtual anatomic structures in the surgical field and has potential applications in craniofacial surgeries. Although early monobloc advancements have benefited from transfacial pinning, the technique remains challenging owing to the limited safe insertion area and orbital injury risk. The authors processed DICOM-format computed tomography images for bone segmentation and added a rod representing the optimal pin insertion trajectory.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece.
The human sphenoid bone (SB), centrally located at the cranial base, is structurally and developmentally complex. It arises from multiple cartilaginous precursors and undergoes both endochondral and intramembranous ossification, forming essential elements such as the sella, orbital walls, and numerous foramina. This review integrates embryological, anatomical, and radiological findings to present a comprehensive view of SB development and variation.
View Article and Find Full Text PDF