Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Neoadjuvant chemotherapy (NAC) is increasingly used in breast cancer. Predictive modeling is useful in predicting pathologic complete response (pCR) to NAC. We test machine learning (ML) models to predict pCR in breast cancer and explore methods of handling missing data.

Methods: Four hundred and ninety-nine patients with breast cancer treated with NAC in two centers in Singapore (National Cancer Centre Singapore [NCCS] and KK Hospital) between January 2014 and December 2017 were included. Eleven clinical features were used to train five different ML models. Listwise deletion and imputation were evaluated on handling missing data. Model performance was evaluated by AUC and calibration (Brier score). Feature importance from the best performing model in the external testing data set was calculated using Shapley additive explanations.

Results: Seventy-two (24.6%), 18 (24.7%), and 31 (24.8%) patients attained pCR in NCCS training, NCCS testing, and KK Women's and Children's Hospital (KKH) testing data sets, respectively. The random forest (RF) base and imputed models have the highest AUCs in the KKH cohort of 0.794 (95% CI, 0.709 to 0.873) and 0.795 (95% CI, 0.706 to 0.871), respectively, and were the best calibrated with the lowest Brier score. No statistically significant difference was noted between AUCs of the base and imputed models in all data sets. The imputed model had a larger positive predictive value (PPV; 98.2% 95.1%) and negative predictive value (NPV; 96.7% 90.0%) than the base model in the KKH data set. Estrogen receptor intensity, human epidermal growth factor 2 intensity, and age at diagnosis were the three most important predictors.

Conclusion: ML, particularly RF, demonstrates reasonable accuracy in pCR prediction after NAC. Imputing missing fields in the data can improve the PPV and NPV of the pCR prediction model.

Download full-text PDF

Source
http://dx.doi.org/10.1200/CCI.24.00071DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
machine learning
8
learning models
8
models predict
8
pathologic complete
8
complete response
8
neoadjuvant chemotherapy
8
handling missing
8
brier score
8
testing data
8

Similar Publications

Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF