98%
921
2 minutes
20
Numerous psychrophiles inhabit the cold environments that are prevalent across the global biosphere. The adaptation of psychrophiles to cold conditions has been widely studied in strains from the archaeal phylum Euryarchaeota and the bacterial class Gamma-proteobacteria. However, given the vast diversity of microorganisms in cold environments, many microbial lineages with potentially unique cold-adaptation strategies remain largely unexplored. This study investigates the cold responses of the Antarctic strain Poseidonibacter antarcticus SM1702, a cold-adapted bacterium belonging to the class Epsilon-proteobacteria within the phylum Campylobacterota. Proteomic analysis revealed that this strain responds to low temperatures by overexpressing proteins involved in energy production and amino acid transport. Experimental results confirmed that intracellular ATP concentrations increased at low temperatures compared to higher temperatures. Low temperatures significantly reduced the strain's amino acid absorption rates, a condition that was mitigated by increased expression of membrane transporters. We propose that the impairment of membrane protein function due to low temperatures is the primary factor affecting cell growth. As a result, the strain enhances ATP synthesis and upregulates membrane transporter expression to counteract cold stress. These findings contribute to a deeper understanding of cold adaptation strategies in psychrophiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00792-024-01372-0 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Biology, Stanford University, Stanford, CA 94305.
Climate change is expected to pose significant threats to public health, particularly vector-borne diseases. Despite dramatic recent increases in dengue that many anecdotally connect with climate change, the effect of anthropogenic climate change on dengue remains poorly quantified. To assess this link, we assembled local-level data on dengue across 21 countries in Asia and the Americas.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Bioengineering, Stanford University, Stanford, CA 94305.
Despite periods of permanent darkness and extensive ice coverage in polar environments, photosynthetic ice diatoms display a remarkable capability of living inside the ice matrix. How these organisms navigate such hostile conditions with limited light and extreme cold remains unknown. Using a custom subzero temperature microscope during an Arctic expedition, we present the finding of motility at record-low temperatures in a Eukaryotic cell.
View Article and Find Full Text PDFNanomicro Lett
September 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses. Although various anti-icing surfaces with photothermal effects can initially prevent icing, any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes. To address these challenges, we have developed a self-draining slippery surface (SDSS) that enables the thawy droplets to self-remove on the horizontal surface, thereby facilitating real-time anti-icing with the aid of sunlight (100 mW cm).
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.
View Article and Find Full Text PDFLangmuir
September 2025
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China.
Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its superior sodium storage performance. However, the high cost of conventional HC precursors remains a critical challenge. To address this, coal─a low-cost, carbon-rich precursor─has been explored for HC synthesis.
View Article and Find Full Text PDF