Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Integrating biocidal nanoparticles (NPs) into polyamide (PA) membranes shows promise for enhancing resistance to biofouling. Incorporating techniques can tailor thin-film nanocomposite (TFN) membranes for specific water purification applications. In this study, silver-based metal-organic framework Ag-MOFs (using silver nitrate and 1,3,5-benzentricarboxylic acid as precursors) are incorporated into PA membranes via three different methods: i) incorporation, ii) dip-coating, and iii) in situ ultrasonic techniques. The characterizations, such as top-surface and cross-section scanning and transmission microscopy, reveal that the incorporation methods for the modified TFN membranes substantially control morphology and surface characteristics. For example, the in situ ultrasonically interlayered Ag-MOFs showed the largest pores (average pore diameter of 14 Å ± 0.1), resulting in the highest water permeance (water flux of 10.9 LMH/bar for NaSO). It also show superior antifouling and anti-biofouling performance, with a flux recovery ratio (FRR) of 94.1% in both fouling tests due to its improved surface hydrophilicity and the antibacterial properties of incorporated Ag-MOFs. Conversely, the surface-grafted dip-coated Ag-MOFs offered the highest salt rejection, attributed to its highly negatively charged surface and a dense PA network with narrow pores (average pore diameter of 10 Å ± 0.06).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020345PMC
http://dx.doi.org/10.1002/smtd.202401566DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
tfn membranes
8
pores average
8
average pore
8
pore diameter
8
membranes
5
analysis metal-organic
4
framework polyamide
4
polyamide interfaces
4
interfaces membranes
4

Similar Publications

To address the increasingly limited water availability, using metal-organic frameworks (MOFs) to capture atmospheric water vapor as usable resources has emerged as a promising strategy. The adsorption characteristics of MOFs as well as their step pressure (i.e.

View Article and Find Full Text PDF

In recent years, photosensitizer-based phototherapy has gained increasing attention in antibacterial applications due to its low cost, noninvasive nature, and low drug resistance. Among various materials, porphyrin-based metal-organic frameworks (MOFs) have demonstrated great potential, due to their good biocompatibility, facile designability, and excellent light absorption capabilities that enable highly efficient antibacterial efficacy. However, further optimization of their antibacterial performance remains a key challenge.

View Article and Find Full Text PDF

Recently, metal-organic frameworks (MOFs) have shown high potential in the field of sensing. However, fluorescent-based detection with MOFs in solution needs complex pre-treatments and has stability issues, complicating measurements and handling for sensing applications. Here, an easy-to-handle and low-cost strategy is introduced to convert MOF-based sensing from solution to surface using scanning probe lithography.

View Article and Find Full Text PDF

Flexible metal-organic frameworks (MOFs) have emerged as a new generation of porous materials and are considered for various applications such as sensing, water or gas capture, and water purification. MIL-88 A (Fe) is one of the earliest and most researched flexible MOFs, but to date, there is a lack in the structural aspects that govern its dynamic behaviour. Here, we report the first crystal structure of DMF-solvated MIL-88 A and investigate the impact of real structure effects on the dynamic behaviour of MIL-88 A (Fe), particularly upon water adsorption.

View Article and Find Full Text PDF

Confinement-Tailored High-Concentration Electrolytes in Metal-Organic Frameworks for Durable Lithium-Metal Batteries.

Small

September 2025

School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.

High-concentration electrolytes (HCEs) face inherent challenges such as high viscosity and diminished ionic conductivity caused by the formation of three-dimensional (3D) anion networks, which limit their practical applications. In this study, it is demonstrated that encapsulating HCEs within metal-organic frameworks (MOFs) effectively disrupts these 3-D networks, resulting in significantly enhanced ionic conductivity. Raman spectroscopy, nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations reveal a significant reduction in aggregates (AGGs)-state anion within MOF-confined electrolytes, confirming the reconstruction of the solvation environment.

View Article and Find Full Text PDF